Spaces:
Sleeping
Sleeping
File size: 9,728 Bytes
251e479 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
import cv2
import numpy as np
from annotator.uniformer.mmcv.arraymisc import dequantize, quantize
from annotator.uniformer.mmcv.image import imread, imwrite
from annotator.uniformer.mmcv.utils import is_str
def flowread(flow_or_path, quantize=False, concat_axis=0, *args, **kwargs):
"""Read an optical flow map.
Args:
flow_or_path (ndarray or str): A flow map or filepath.
quantize (bool): whether to read quantized pair, if set to True,
remaining args will be passed to :func:`dequantize_flow`.
concat_axis (int): The axis that dx and dy are concatenated,
can be either 0 or 1. Ignored if quantize is False.
Returns:
ndarray: Optical flow represented as a (h, w, 2) numpy array
"""
if isinstance(flow_or_path, np.ndarray):
if (flow_or_path.ndim != 3) or (flow_or_path.shape[-1] != 2):
raise ValueError(f'Invalid flow with shape {flow_or_path.shape}')
return flow_or_path
elif not is_str(flow_or_path):
raise TypeError(f'"flow_or_path" must be a filename or numpy array, '
f'not {type(flow_or_path)}')
if not quantize:
with open(flow_or_path, 'rb') as f:
try:
header = f.read(4).decode('utf-8')
except Exception:
raise IOError(f'Invalid flow file: {flow_or_path}')
else:
if header != 'PIEH':
raise IOError(f'Invalid flow file: {flow_or_path}, '
'header does not contain PIEH')
w = np.fromfile(f, np.int32, 1).squeeze()
h = np.fromfile(f, np.int32, 1).squeeze()
flow = np.fromfile(f, np.float32, w * h * 2).reshape((h, w, 2))
else:
assert concat_axis in [0, 1]
cat_flow = imread(flow_or_path, flag='unchanged')
if cat_flow.ndim != 2:
raise IOError(
f'{flow_or_path} is not a valid quantized flow file, '
f'its dimension is {cat_flow.ndim}.')
assert cat_flow.shape[concat_axis] % 2 == 0
dx, dy = np.split(cat_flow, 2, axis=concat_axis)
flow = dequantize_flow(dx, dy, *args, **kwargs)
return flow.astype(np.float32)
def flowwrite(flow, filename, quantize=False, concat_axis=0, *args, **kwargs):
"""Write optical flow to file.
If the flow is not quantized, it will be saved as a .flo file losslessly,
otherwise a jpeg image which is lossy but of much smaller size. (dx and dy
will be concatenated horizontally into a single image if quantize is True.)
Args:
flow (ndarray): (h, w, 2) array of optical flow.
filename (str): Output filepath.
quantize (bool): Whether to quantize the flow and save it to 2 jpeg
images. If set to True, remaining args will be passed to
:func:`quantize_flow`.
concat_axis (int): The axis that dx and dy are concatenated,
can be either 0 or 1. Ignored if quantize is False.
"""
if not quantize:
with open(filename, 'wb') as f:
f.write('PIEH'.encode('utf-8'))
np.array([flow.shape[1], flow.shape[0]], dtype=np.int32).tofile(f)
flow = flow.astype(np.float32)
flow.tofile(f)
f.flush()
else:
assert concat_axis in [0, 1]
dx, dy = quantize_flow(flow, *args, **kwargs)
dxdy = np.concatenate((dx, dy), axis=concat_axis)
imwrite(dxdy, filename)
def quantize_flow(flow, max_val=0.02, norm=True):
"""Quantize flow to [0, 255].
After this step, the size of flow will be much smaller, and can be
dumped as jpeg images.
Args:
flow (ndarray): (h, w, 2) array of optical flow.
max_val (float): Maximum value of flow, values beyond
[-max_val, max_val] will be truncated.
norm (bool): Whether to divide flow values by image width/height.
Returns:
tuple[ndarray]: Quantized dx and dy.
"""
h, w, _ = flow.shape
dx = flow[..., 0]
dy = flow[..., 1]
if norm:
dx = dx / w # avoid inplace operations
dy = dy / h
# use 255 levels instead of 256 to make sure 0 is 0 after dequantization.
flow_comps = [
quantize(d, -max_val, max_val, 255, np.uint8) for d in [dx, dy]
]
return tuple(flow_comps)
def dequantize_flow(dx, dy, max_val=0.02, denorm=True):
"""Recover from quantized flow.
Args:
dx (ndarray): Quantized dx.
dy (ndarray): Quantized dy.
max_val (float): Maximum value used when quantizing.
denorm (bool): Whether to multiply flow values with width/height.
Returns:
ndarray: Dequantized flow.
"""
assert dx.shape == dy.shape
assert dx.ndim == 2 or (dx.ndim == 3 and dx.shape[-1] == 1)
dx, dy = [dequantize(d, -max_val, max_val, 255) for d in [dx, dy]]
if denorm:
dx *= dx.shape[1]
dy *= dx.shape[0]
flow = np.dstack((dx, dy))
return flow
def flow_warp(img, flow, filling_value=0, interpolate_mode='nearest'):
"""Use flow to warp img.
Args:
img (ndarray, float or uint8): Image to be warped.
flow (ndarray, float): Optical Flow.
filling_value (int): The missing pixels will be set with filling_value.
interpolate_mode (str): bilinear -> Bilinear Interpolation;
nearest -> Nearest Neighbor.
Returns:
ndarray: Warped image with the same shape of img
"""
warnings.warn('This function is just for prototyping and cannot '
'guarantee the computational efficiency.')
assert flow.ndim == 3, 'Flow must be in 3D arrays.'
height = flow.shape[0]
width = flow.shape[1]
channels = img.shape[2]
output = np.ones(
(height, width, channels), dtype=img.dtype) * filling_value
grid = np.indices((height, width)).swapaxes(0, 1).swapaxes(1, 2)
dx = grid[:, :, 0] + flow[:, :, 1]
dy = grid[:, :, 1] + flow[:, :, 0]
sx = np.floor(dx).astype(int)
sy = np.floor(dy).astype(int)
valid = (sx >= 0) & (sx < height - 1) & (sy >= 0) & (sy < width - 1)
if interpolate_mode == 'nearest':
output[valid, :] = img[dx[valid].round().astype(int),
dy[valid].round().astype(int), :]
elif interpolate_mode == 'bilinear':
# dirty walkround for integer positions
eps_ = 1e-6
dx, dy = dx + eps_, dy + eps_
left_top_ = img[np.floor(dx[valid]).astype(int),
np.floor(dy[valid]).astype(int), :] * (
np.ceil(dx[valid]) - dx[valid])[:, None] * (
np.ceil(dy[valid]) - dy[valid])[:, None]
left_down_ = img[np.ceil(dx[valid]).astype(int),
np.floor(dy[valid]).astype(int), :] * (
dx[valid] - np.floor(dx[valid]))[:, None] * (
np.ceil(dy[valid]) - dy[valid])[:, None]
right_top_ = img[np.floor(dx[valid]).astype(int),
np.ceil(dy[valid]).astype(int), :] * (
np.ceil(dx[valid]) - dx[valid])[:, None] * (
dy[valid] - np.floor(dy[valid]))[:, None]
right_down_ = img[np.ceil(dx[valid]).astype(int),
np.ceil(dy[valid]).astype(int), :] * (
dx[valid] - np.floor(dx[valid]))[:, None] * (
dy[valid] - np.floor(dy[valid]))[:, None]
output[valid, :] = left_top_ + left_down_ + right_top_ + right_down_
else:
raise NotImplementedError(
'We only support interpolation modes of nearest and bilinear, '
f'but got {interpolate_mode}.')
return output.astype(img.dtype)
def flow_from_bytes(content):
"""Read dense optical flow from bytes.
.. note::
This load optical flow function works for FlyingChairs, FlyingThings3D,
Sintel, FlyingChairsOcc datasets, but cannot load the data from
ChairsSDHom.
Args:
content (bytes): Optical flow bytes got from files or other streams.
Returns:
ndarray: Loaded optical flow with the shape (H, W, 2).
"""
# header in first 4 bytes
header = content[:4]
if header.decode('utf-8') != 'PIEH':
raise Exception('Flow file header does not contain PIEH')
# width in second 4 bytes
width = np.frombuffer(content[4:], np.int32, 1).squeeze()
# height in third 4 bytes
height = np.frombuffer(content[8:], np.int32, 1).squeeze()
# after first 12 bytes, all bytes are flow
flow = np.frombuffer(content[12:], np.float32, width * height * 2).reshape(
(height, width, 2))
return flow
def sparse_flow_from_bytes(content):
"""Read the optical flow in KITTI datasets from bytes.
This function is modified from RAFT load the `KITTI datasets
<https://github.com/princeton-vl/RAFT/blob/224320502d66c356d88e6c712f38129e60661e80/core/utils/frame_utils.py#L102>`_.
Args:
content (bytes): Optical flow bytes got from files or other streams.
Returns:
Tuple(ndarray, ndarray): Loaded optical flow with the shape (H, W, 2)
and flow valid mask with the shape (H, W).
""" # nopa
content = np.frombuffer(content, np.uint8)
flow = cv2.imdecode(content, cv2.IMREAD_ANYDEPTH | cv2.IMREAD_COLOR)
flow = flow[:, :, ::-1].astype(np.float32)
# flow shape (H, W, 2) valid shape (H, W)
flow, valid = flow[:, :, :2], flow[:, :, 2]
flow = (flow - 2**15) / 64.0
return flow, valid
|