File size: 10,944 Bytes
ec0fdfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# guided-diffusion

This is the codebase for [Diffusion Models Beat GANS on Image Synthesis](http://arxiv.org/abs/2105.05233).

This repository is based on [openai/improved-diffusion](https://github.com/openai/improved-diffusion), with modifications for classifier conditioning and architecture improvements.

# Download pre-trained models

We have released checkpoints for the main models in the paper. Before using these models, please review the corresponding [model card](model-card.md) to understand the intended use and limitations of these models.

Here are the download links for each model checkpoint:

 * 64x64 classifier: [64x64_classifier.pt](https://openaipublic.blob.core.windows.net/diffusion/jul-2021/64x64_classifier.pt)
 * 64x64 diffusion: [64x64_diffusion.pt](https://openaipublic.blob.core.windows.net/diffusion/jul-2021/64x64_diffusion.pt)
 * 128x128 classifier: [128x128_classifier.pt](https://openaipublic.blob.core.windows.net/diffusion/jul-2021/128x128_classifier.pt)
 * 128x128 diffusion: [128x128_diffusion.pt](https://openaipublic.blob.core.windows.net/diffusion/jul-2021/128x128_diffusion.pt)
 * 256x256 classifier: [256x256_classifier.pt](https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_classifier.pt)
 * 256x256 diffusion: [256x256_diffusion.pt](https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_diffusion.pt)
 * 256x256 diffusion (not class conditional): [256x256_diffusion_uncond.pt](https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_diffusion_uncond.pt)
 * 512x512 classifier: [512x512_classifier.pt](https://openaipublic.blob.core.windows.net/diffusion/jul-2021/512x512_classifier.pt)
 * 512x512 diffusion: [512x512_diffusion.pt](https://openaipublic.blob.core.windows.net/diffusion/jul-2021/512x512_diffusion.pt)
 * 64x64 -> 256x256 upsampler: [64_256_upsampler.pt](https://openaipublic.blob.core.windows.net/diffusion/jul-2021/64_256_upsampler.pt)
 * 128x128 -> 512x512 upsampler: [128_512_upsampler.pt](https://openaipublic.blob.core.windows.net/diffusion/jul-2021/128_512_upsampler.pt)
 * LSUN bedroom: [lsun_bedroom.pt](https://openaipublic.blob.core.windows.net/diffusion/jul-2021/lsun_bedroom.pt)
 * LSUN cat: [lsun_cat.pt](https://openaipublic.blob.core.windows.net/diffusion/jul-2021/lsun_cat.pt)
 * LSUN horse: [lsun_horse.pt](https://openaipublic.blob.core.windows.net/diffusion/jul-2021/lsun_horse.pt)
 * LSUN horse (no dropout): [lsun_horse_nodropout.pt](https://openaipublic.blob.core.windows.net/diffusion/jul-2021/lsun_horse_nodropout.pt)

# Sampling from pre-trained models

To sample from these models, you can use the `classifier_sample.py`, `image_sample.py`, and `super_res_sample.py` scripts.
Here, we provide flags for sampling from all of these models.
We assume that you have downloaded the relevant model checkpoints into a folder called `models/`.

For these examples, we will generate 100 samples with batch size 4. Feel free to change these values.

```
SAMPLE_FLAGS="--batch_size 4 --num_samples 100 --timestep_respacing 250"
```

## Classifier guidance

Note for these sampling runs that you can set `--classifier_scale 0` to sample from the base diffusion model.
You may also use the `image_sample.py` script instead of `classifier_sample.py` in that case.

 * 64x64 model:

```
MODEL_FLAGS="--attention_resolutions 32,16,8 --class_cond True --diffusion_steps 1000 --dropout 0.1 --image_size 64 --learn_sigma True --noise_schedule cosine --num_channels 192 --num_head_channels 64 --num_res_blocks 3 --resblock_updown True --use_new_attention_order True --use_fp16 True --use_scale_shift_norm True"
python classifier_sample.py $MODEL_FLAGS --classifier_scale 1.0 --classifier_path models/64x64_classifier.pt --model_path models/64x64_diffusion.pt $SAMPLE_FLAGS
```

 * 128x128 model:

```
MODEL_FLAGS="--attention_resolutions 32,16,8 --class_cond True --diffusion_steps 1000 --image_size 128 --learn_sigma True --noise_schedule linear --num_channels 256 --num_heads 4 --num_res_blocks 2 --resblock_updown True --use_fp16 True --use_scale_shift_norm True"
python classifier_sample.py $MODEL_FLAGS --classifier_scale 0.5 --classifier_path models/128x128_classifier.pt --model_path models/128x128_diffusion.pt $SAMPLE_FLAGS
```

 * 256x256 model:

```
MODEL_FLAGS="--attention_resolutions 32,16,8 --class_cond True --diffusion_steps 1000 --image_size 256 --learn_sigma True --noise_schedule linear --num_channels 256 --num_head_channels 64 --num_res_blocks 2 --resblock_updown True --use_fp16 True --use_scale_shift_norm True"
python classifier_sample.py $MODEL_FLAGS --classifier_scale 1.0 --classifier_path models/256x256_classifier.pt --model_path models/256x256_diffusion.pt $SAMPLE_FLAGS
```

 * 256x256 model (unconditional):

```
MODEL_FLAGS="--attention_resolutions 32,16,8 --class_cond False --diffusion_steps 1000 --image_size 256 --learn_sigma True --noise_schedule linear --num_channels 256 --num_head_channels 64 --num_res_blocks 2 --resblock_updown True --use_fp16 True --use_scale_shift_norm True"
python classifier_sample.py $MODEL_FLAGS --classifier_scale 10.0 --classifier_path models/256x256_classifier.pt --model_path models/256x256_diffusion.pt $SAMPLE_FLAGS
```

 * 512x512 model:

```
MODEL_FLAGS="--attention_resolutions 32,16,8 --class_cond True --diffusion_steps 1000 --image_size 512 --learn_sigma True --noise_schedule linear --num_channels 256 --num_head_channels 64 --num_res_blocks 2 --resblock_updown True --use_fp16 False --use_scale_shift_norm True"
python classifier_sample.py $MODEL_FLAGS --classifier_scale 4.0 --classifier_path models/512x512_classifier.pt --model_path models/512x512_diffusion.pt $SAMPLE_FLAGS
```

## Upsampling

For these runs, we assume you have some base samples in a file `64_samples.npz` or `128_samples.npz` for the two respective models.

 * 64 -> 256:

```
MODEL_FLAGS="--attention_resolutions 32,16,8 --class_cond True --diffusion_steps 1000 --large_size 256  --small_size 64 --learn_sigma True --noise_schedule linear --num_channels 192 --num_heads 4 --num_res_blocks 2 --resblock_updown True --use_fp16 True --use_scale_shift_norm True"
python super_res_sample.py $MODEL_FLAGS --model_path models/64_256_upsampler.pt --base_samples 64_samples.npz $SAMPLE_FLAGS
```

 * 128 -> 512:

```
MODEL_FLAGS="--attention_resolutions 32,16 --class_cond True --diffusion_steps 1000 --large_size 512 --small_size 128 --learn_sigma True --noise_schedule linear --num_channels 192 --num_head_channels 64 --num_res_blocks 2 --resblock_updown True --use_fp16 True --use_scale_shift_norm True"
python super_res_sample.py $MODEL_FLAGS --model_path models/128_512_upsampler.pt $SAMPLE_FLAGS --base_samples 128_samples.npz
```

## LSUN models

These models are class-unconditional and correspond to a single LSUN class. Here, we show how to sample from `lsun_bedroom.pt`, but the other two LSUN checkpoints should work as well:

```
MODEL_FLAGS="--attention_resolutions 32,16,8 --class_cond False --diffusion_steps 1000 --dropout 0.1 --image_size 256 --learn_sigma True --noise_schedule linear --num_channels 256 --num_head_channels 64 --num_res_blocks 2 --resblock_updown True --use_fp16 True --use_scale_shift_norm True"
python image_sample.py $MODEL_FLAGS --model_path models/lsun_bedroom.pt $SAMPLE_FLAGS
```

You can sample from `lsun_horse_nodropout.pt` by changing the dropout flag:

```
MODEL_FLAGS="--attention_resolutions 32,16,8 --class_cond False --diffusion_steps 1000 --dropout 0.0 --image_size 256 --learn_sigma True --noise_schedule linear --num_channels 256 --num_head_channels 64 --num_res_blocks 2 --resblock_updown True --use_fp16 True --use_scale_shift_norm True"
python image_sample.py $MODEL_FLAGS --model_path models/lsun_horse_nodropout.pt $SAMPLE_FLAGS
```

Note that for these models, the best samples result from using 1000 timesteps:

```
SAMPLE_FLAGS="--batch_size 4 --num_samples 100 --timestep_respacing 1000"
```

# Results

This table summarizes our ImageNet results for pure guided diffusion models:

| Dataset          | FID  | Precision | Recall |
|------------------|------|-----------|--------|
| ImageNet 64x64   | 2.07 | 0.74      | 0.63   |
| ImageNet 128x128 | 2.97 | 0.78      | 0.59   |
| ImageNet 256x256 | 4.59 | 0.82      | 0.52   |
| ImageNet 512x512 | 7.72 | 0.87      | 0.42   |

This table shows the best results for high resolutions when using upsampling and guidance together:

| Dataset          | FID  | Precision | Recall |
|------------------|------|-----------|--------|
| ImageNet 256x256 | 3.94 | 0.83      | 0.53   |
| ImageNet 512x512 | 3.85 | 0.84      | 0.53   |

Finally, here are the unguided results on individual LSUN classes:

| Dataset      | FID  | Precision | Recall |
|--------------|------|-----------|--------|
| LSUN Bedroom | 1.90 | 0.66      | 0.51   |
| LSUN Cat     | 5.57 | 0.63      | 0.52   |
| LSUN Horse   | 2.57 | 0.71      | 0.55   |

# Training models

Training diffusion models is described in the [parent repository](https://github.com/openai/improved-diffusion). Training a classifier is similar. We assume you have put training hyperparameters into a `TRAIN_FLAGS` variable, and classifier hyperparameters into a `CLASSIFIER_FLAGS` variable. Then you can run:

```
mpiexec -n N python scripts/classifier_train.py --data_dir path/to/imagenet $TRAIN_FLAGS $CLASSIFIER_FLAGS
```

Make sure to divide the batch size in `TRAIN_FLAGS` by the number of MPI processes you are using.

Here are flags for training the 128x128 classifier. You can modify these for training classifiers at other resolutions:

```sh
TRAIN_FLAGS="--iterations 300000 --anneal_lr True --batch_size 256 --lr 3e-4 --save_interval 10000 --weight_decay 0.05"
CLASSIFIER_FLAGS="--image_size 128 --classifier_attention_resolutions 32,16,8 --classifier_depth 2 --classifier_width 128 --classifier_pool attention --classifier_resblock_updown True --classifier_use_scale_shift_norm True"
```

For sampling from a 128x128 classifier-guided model, 25 step DDIM:

```sh
MODEL_FLAGS="--attention_resolutions 32,16,8 --class_cond True --image_size 128 --learn_sigma True --num_channels 256 --num_heads 4 --num_res_blocks 2 --resblock_updown True --use_fp16 True --use_scale_shift_norm True"
CLASSIFIER_FLAGS="--image_size 128 --classifier_attention_resolutions 32,16,8 --classifier_depth 2 --classifier_width 128 --classifier_pool attention --classifier_resblock_updown True --classifier_use_scale_shift_norm True --classifier_scale 1.0 --classifier_use_fp16 True"
SAMPLE_FLAGS="--batch_size 4 --num_samples 50000 --timestep_respacing ddim25 --use_ddim True"
mpiexec -n N python scripts/classifier_sample.py \
    --model_path /path/to/model.pt \
    --classifier_path path/to/classifier.pt \
    $MODEL_FLAGS $CLASSIFIER_FLAGS $SAMPLE_FLAGS
```

To sample for 250 timesteps without DDIM, replace `--timestep_respacing ddim25` to `--timestep_respacing 250`, and replace `--use_ddim True` with `--use_ddim False`.