Spaces:
Running
Running
File size: 11,488 Bytes
c9a3acd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
import gradio as gr
import torch
import os
import sys
import cv2
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
from PIL import ImageFont
from PIL import ImageDraw
from scipy.stats import rankdata
import torch
import torch.nn as nn
import torchvision
from torchvision import transforms as pth_transforms
import torchvision.transforms as transforms
from einops import rearrange, repeat
import vision_transformer as vits
def get_vit256(pretrained_weights, arch='vit_small', device=torch.device('cpu')):
r"""
Builds ViT-256 Model.
Args:
- pretrained_weights (str): Path to ViT-256 Model Checkpoint.
- arch (str): Which model architecture.
- device (torch): Torch device to save model.
Returns:
- model256 (torch.nn): Initialized model.
"""
checkpoint_key = 'teacher'
device = torch.device("cpu") if torch.cuda.is_available() else torch.device("cpu")
model256 = vits.__dict__[arch](patch_size=16, num_classes=0)
for p in model256.parameters():
p.requires_grad = False
model256.eval()
model256.to(device)
if os.path.isfile(pretrained_weights):
state_dict = torch.load(pretrained_weights, map_location="cpu")
if checkpoint_key is not None and checkpoint_key in state_dict:
print(f"Take key {checkpoint_key} in provided checkpoint dict")
state_dict = state_dict[checkpoint_key]
# remove `module.` prefix
state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()}
# remove `backbone.` prefix induced by multicrop wrapper
state_dict = {k.replace("backbone.", ""): v for k, v in state_dict.items()}
msg = model256.load_state_dict(state_dict, strict=False)
print('Pretrained weights found at {} and loaded with msg: {}'.format(pretrained_weights, msg))
return model256
def cmap_map(function, cmap):
r"""
Applies function (which should operate on vectors of shape 3: [r, g, b]), on colormap cmap.
This routine will break any discontinuous points in a colormap.
Args:
- function (function)
- cmap (matplotlib.colormap)
Returns:
- matplotlib.colormap
"""
cdict = cmap._segmentdata
step_dict = {}
# Firt get the list of points where the segments start or end
for key in ('red', 'green', 'blue'):
step_dict[key] = list(map(lambda x: x[0], cdict[key]))
step_list = sum(step_dict.values(), [])
step_list = np.array(list(set(step_list)))
# Then compute the LUT, and apply the function to the LUT
reduced_cmap = lambda step : np.array(cmap(step)[0:3])
old_LUT = np.array(list(map(reduced_cmap, step_list)))
new_LUT = np.array(list(map(function, old_LUT)))
# Now try to make a minimal segment definition of the new LUT
cdict = {}
for i, key in enumerate(['red','green','blue']):
this_cdict = {}
for j, step in enumerate(step_list):
if step in step_dict[key]:
this_cdict[step] = new_LUT[j, i]
elif new_LUT[j,i] != old_LUT[j, i]:
this_cdict[step] = new_LUT[j, i]
colorvector = list(map(lambda x: x + (x[1], ), this_cdict.items()))
colorvector.sort()
cdict[key] = colorvector
return matplotlib.colors.LinearSegmentedColormap('colormap',cdict,1024)
def identity(x):
r"""
Identity Function.
Args:
- x:
Returns:
- x
"""
return x
def tensorbatch2im(input_image, imtype=np.uint8):
r""""
Converts a Tensor array into a numpy image array.
Args:
- input_image (torch.Tensor): (B, C, W, H) Torch Tensor.
- imtype (type): the desired type of the converted numpy array
Returns:
- image_numpy (np.array): (B, W, H, C) Numpy Array.
"""
if not isinstance(input_image, np.ndarray):
image_numpy = input_image.cpu().float().numpy() # convert it into a numpy array
#if image_numpy.shape[0] == 1: # grayscale to RGB
# image_numpy = np.tile(image_numpy, (3, 1, 1))
image_numpy = (np.transpose(image_numpy, (0, 2, 3, 1)) + 1) / 2.0 * 255.0 # post-processing: tranpose and scaling
else: # if it is a numpy array, do nothing
image_numpy = input_image
return image_numpy.astype(imtype)
def getConcatImage(imgs, how='horizontal', gap=0):
r"""
Function to concatenate list of images (vertical or horizontal).
Args:
- imgs (list of PIL.Image): List of PIL Images to concatenate.
- how (str): How the images are concatenated (either 'horizontal' or 'vertical')
- gap (int): Gap (in px) between images
Return:
- dst (PIL.Image): Concatenated image result.
"""
gap_dist = (len(imgs)-1)*gap
if how == 'vertical':
w, h = np.max([img.width for img in imgs]), np.sum([img.height for img in imgs])
h += gap_dist
curr_h = 0
dst = Image.new('RGBA', (w, h), color=(255, 255, 255, 0))
for img in imgs:
dst.paste(img, (0, curr_h))
curr_h += img.height + gap
elif how == 'horizontal':
w, h = np.sum([img.width for img in imgs]), np.min([img.height for img in imgs])
w += gap_dist
curr_w = 0
dst = Image.new('RGBA', (w, h), color=(255, 255, 255, 0))
for idx, img in enumerate(imgs):
dst.paste(img, (curr_w, 0))
curr_w += img.width + gap
return dst
def add_margin(pil_img, top, right, bottom, left, color):
r"""
Adds custom margin to PIL.Image.
"""
width, height = pil_img.size
new_width = width + right + left
new_height = height + top + bottom
result = Image.new(pil_img.mode, (new_width, new_height), color)
result.paste(pil_img, (left, top))
return result
def concat_scores256(attns, size=(256,256)):
r"""
"""
rank = lambda v: rankdata(v)*100/len(v)
color_block = [rank(attn.flatten()).reshape(size) for attn in attns]
color_hm = np.concatenate([
np.concatenate(color_block[i:(i+16)], axis=1)
for i in range(0,256,16)
])
return color_hm
def get_scores256(attns, size=(256,256)):
r"""
"""
rank = lambda v: rankdata(v)*100/len(v)
color_block = [rank(attn.flatten()).reshape(size) for attn in attns][0]
return color_block
def get_patch_attention_scores(patch, model256, scale=1, device256=torch.device('cpu')):
t = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(
[0.5, 0.5, 0.5], [0.5, 0.5, 0.5]
)
])
with torch.no_grad():
batch_256 = t(patch).unsqueeze(0)
batch_256 = batch_256.to(device256, non_blocking=True)
features_256 = model256(batch_256)
attention_256 = model256.get_last_selfattention(batch_256)
nh = attention_256.shape[1] # number of head
attention_256 = attention_256[:, :, 0, 1:].reshape(256, nh, -1)
attention_256 = attention_256.reshape(1, nh, 16, 16)
attention_256 = nn.functional.interpolate(attention_256, scale_factor=int(16/scale), mode="nearest").cpu().numpy()
if scale != 1:
batch_256 = nn.functional.interpolate(batch_256, scale_factor=(1/scale), mode="nearest")
return tensorbatch2im(batch_256), attention_256
def create_patch_heatmaps_concat(patch, model256, output_dir=None, fname=None, threshold=None,
offset=16, alpha=0.5, cmap=plt.get_cmap('coolwarm')):
r"""
Creates patch heatmaps (concatenated for easy comparison)
Args:
- patch (PIL.Image): 256 x 256 Image
- model256 (torch.nn): 256-Level ViT
- output_dir (str): Save directory / subdirectory
- fname (str): Naming structure of files
- offset (int): How much to offset (from top-left corner with zero-padding) the region by for blending
- alpha (float): Image blending factor for cv2.addWeighted
- cmap (matplotlib.pyplot): Colormap for creating heatmaps
Returns:
- None
"""
patch1 = patch.copy()
patch2 = add_margin(patch.crop((16,16,256,256)), top=0, left=0, bottom=16, right=16, color=(255,255,255))
b256_1, a256_1 = get_patch_attention_scores(patch1, model256)
b256_1, a256_2 = get_patch_attention_scores(patch2, model256)
save_region = np.array(patch.copy())
s = 256
offset_2 = offset
if threshold != None:
ths = []
for i in range(6):
score256_1 = get_scores256(a256_1[:,i,:,:], size=(s,)*2)
score256_2 = get_scores256(a256_2[:,i,:,:], size=(s,)*2)
new_score256_2 = np.zeros_like(score256_2)
new_score256_2[offset_2:s, offset_2:s] = score256_2[:(s-offset_2), :(s-offset_2)]
overlay256 = np.ones_like(score256_2)*100
overlay256[offset_2:s, offset_2:s] += 100
score256 = (score256_1+new_score256_2)/overlay256
mask256 = score256.copy()
mask256[mask256 < threshold] = 0
mask256[mask256 > threshold] = 0.95
color_block256 = (cmap(mask256)*255)[:,:,:3].astype(np.uint8)
region256_hm = cv2.addWeighted(color_block256, alpha, save_region.copy(), 1-alpha, 0, save_region.copy())
region256_hm[mask256==0] = 0
img_inverse = save_region.copy()
img_inverse[mask256 == 0.95] = 0
ths.append(region256_hm+img_inverse)
ths = [Image.fromarray(img) for img in ths]
getConcatImage([getConcatImage(ths[0:3]),
getConcatImage(ths[4:6])], how='vertical').save(os.path.join(output_dir, '%s_256th.png' % (fname)))
hms = []
for i in range(6):
score256_1 = get_scores256(a256_1[:,i,:,:], size=(s,)*2)
score256_2 = get_scores256(a256_2[:,i,:,:], size=(s,)*2)
new_score256_2 = np.zeros_like(score256_2)
new_score256_2[offset_2:s, offset_2:s] = score256_2[:(s-offset_2), :(s-offset_2)]
overlay256 = np.ones_like(score256_2)*100
overlay256[offset_2:s, offset_2:s] += 100
score256 = (score256_1+new_score256_2)/overlay256
color_block256 = (cmap(score256)*255)[:,:,:3].astype(np.uint8)
region256_hm = cv2.addWeighted(color_block256, alpha, save_region.copy(), 1-alpha, 0, save_region.copy())
hms.append(region256_hm)
hms = [Image.fromarray(img) for img in hms]
return getConcatImage([getConcatImage(hms[0:3], how='horizontal', gap=10),
getConcatImage(hms[4:6], how='horizontal', gap=10)], how='vertical', gap=10)
def demo_patch_heatmaps(input_image):
light_jet = cmap_map(lambda x: x/2 + 0.5, matplotlib.cm.jet)
model256 = get_vit256(pretrained_weights=pretrained_weights256)
demo_heatmap = create_patch_heatmaps_concat(input_image, model256, cmap=light_jet)
return demo_heatmap
pretrained_weights256 = './model.pt'
title = "Demo for 11604"
description = "To use, upload a 256 x 256 patch (20X magnification). \
The output will generate attention results from 6 attention heads."
iface = gr.Interface(fn=demo_patch_heatmaps,
inputs=gr.inputs.Image(type='pil'),
outputs="image",
title=title,
description=description,
allow_flagging=False)
iface.launch()
|