File size: 13,596 Bytes
cddd431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0992122
cddd431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d52de0
cddd431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c866c0
 
cddd431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c866c0
 
cddd431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as transforms
import torchvision
from PIL import Image
from sklearn.decomposition import NMF
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

def relu_hook_function(module, grad_in, grad_out):
    if isinstance(module, nn.ReLU):
        return (F.relu(grad_in[0]),)
    
def blur_sailency(input_image):
    return torchvision.transforms.functional.gaussian_blur(input_image, kernel_size=[11, 11], sigma=[5,5])

def occlusion(img1, img2, model, w_size = 64, stride = 8, batch_size = 32):
    
    measure = nn.CosineSimilarity(dim=-1) 
    output_size = int(((img2.size(-1) - w_size) / stride) + 1)
    out1_condition, out2_condition = model(img1), model(img2)
    images1 = []
    images2 = []

    for i in range(output_size):
        for j in range(output_size):
            start_i, start_j = i * stride, j * stride
            image1 = img1.clone().detach()
            image2 = img2.clone().detach()
            image1[:, :, start_i : start_i + w_size, start_j : start_j + w_size] = 0  
            image2[:, :, start_i : start_i + w_size, start_j : start_j + w_size] = 0  
            images1.append(image1)
            images2.append(image2)

    images1 = torch.cat(images1, dim=0).to(device)
    images2 = torch.cat(images2, dim=0).to(device)

    score_map1 = []
    score_map2 = []

    assert images1.shape[0] == images2.shape[0]

    for b in range(0, images2.shape[0], batch_size):

        with torch.no_grad():
            out1 = model(images1[b : b + batch_size, :])
            out2 = model(images2[b : b + batch_size, :])

        score_map1.append(measure(out1, out2_condition))  # try torch.mm(out2_condition, out1.t())[0]
        score_map2.append(measure(out1_condition, out2))  # try torch.mm(out1_condition, out2.t())[0]

    score_map1 = torch.cat(score_map1, dim = 0)   
    score_map2 = torch.cat(score_map2, dim = 0)    
    assert images2.shape[0] == score_map2.shape[0] == score_map1.shape[0]

    heatmap1 = score_map1.view(output_size, output_size).cpu().detach().numpy()
    heatmap2 = score_map2.view(output_size, output_size).cpu().detach().numpy()
    base_score = measure(out1_condition, out2_condition)

    heatmap1 = (heatmap1 - base_score.item()) * -1   # or base_score.item() - heatmap1. The higher the drop, the better
    heatmap2 = (heatmap2 - base_score.item()) * -1   # or base_score.item() - heatmap2. The higher the drop, the better

    heatmap1 = (heatmap1 - heatmap1.min()) / (heatmap1.max() - heatmap1.min())
    heatmap2 = (heatmap2 - heatmap2.min()) / (heatmap2.max() - heatmap2.min())
    
    return heatmap1, heatmap2


def pairwise_occlusion(img1, img2, model, batch_size, erase_scale, erase_ratio, num_erases):

    measure = nn.CosineSimilarity(dim=-1) 
    out1_condition, out2_condition = model(img1), model(img2)
    baseline = measure(out1_condition, out2_condition).detach()
    # a bit sensitive to scale and ratio. erase_scale is from (scale[0] * 100) % to (scale[1] * 100) %
    random_erase = transforms.RandomErasing(p=1.0, scale=erase_scale, ratio=erase_ratio)  
    
    image1 = img1.clone().detach()
    image2 = img2.clone().detach()
    images1 = []
    images2 = []

    for _ in range(num_erases):
        images1.append(random_erase(image1))
        images2.append(random_erase(image2))

    images1 = torch.cat(images1, dim=0).to(device)
    images2 = torch.cat(images2, dim=0).to(device)
    
    sims = []
    weights1 = []
    weights2 = []

    for b in range(0, images2.shape[0], batch_size):

        with torch.no_grad():
            out1 = model(images1[b : b + batch_size, :])
            out2 = model(images2[b : b + batch_size, :])
            sims.append(measure(out1, out2))
            weights1.append(out1.norm(dim=-1))
            weights2.append(out2.norm(dim=-1))

    sims = torch.cat(sims, dim = 0)       
    weights1, weights2 = torch.cat(weights1, dim = 0).cpu().numpy(), torch.cat(weights2, dim = 0).cpu().numpy()
    weights = list(zip(weights1, weights2))
    sims = baseline - sims   # the higher the drop, the better
    sims = F.softmax(sims, dim = -1)
    sims = sims.cpu().numpy()

    assert sims.shape[0] == images1.shape[0] == images2.shape[0]
    A1 = np.zeros((224, 224))
    A2 = np.zeros((224, 224))

    for n in range(images1.shape[0]):

        im1_2d = images1[n].cpu().numpy().transpose((1, 2, 0)).sum(axis=-1)
        im2_2d = images2[n].cpu().numpy().transpose((1, 2, 0)).sum(axis=-1)

        joint_similarity = sims[n]
        weight = weights[n]

        if weight[0] < weight[1]:
            A1[im1_2d == 0] += joint_similarity
        else:
            A2[im2_2d == 0] += joint_similarity

    A1 = A1 / (np.max(A1) + 1e-9)  
    A2 = A2 / (np.max(A2) + 1e-9)

    return A1, A2

def create_mixed_images(transform_type, ig_transforms, step, img_path, add_noise):

    img = Image.open(img_path).convert('RGB') if isinstance(img_path, str) else img_path
    img1 = ig_transforms['pure'](img).unsqueeze(0).to(device)
    img2 = ig_transforms[transform_type](img).unsqueeze(0).to(device)

    lambdas = np.arange(1,0,-step)
    mixed_images = []
    for l,lam in enumerate(lambdas):
        mixed_img = lam * img1 + (1 - lam) * img2
        mixed_images.append(mixed_img)
        
    if add_noise:
        sigma = 0.15 / (torch.max(img1) - torch.min(img1)).item()
        mixed_images = [im + torch.zeros_like(im).normal_(0, sigma) if (n>0) and (n<len(mixed_images)-1) else im for n,im in enumerate(mixed_images)]
        
    return mixed_images

def averaged_transforms(guided, ssl_model, mixed_images, blur_output):

    measure = nn.CosineSimilarity(dim=-1)

    if guided:
        handles = []
        for i, module in enumerate(ssl_model.modules()):
            if isinstance(module, nn.ReLU):
                handles.append(module.register_backward_hook(relu_hook_function))
                
    grads1 = []
    grads2 = []

    for xbar_image in mixed_images[1:]:  

        ssl_model.zero_grad()
        input_image1 = mixed_images[0].clone().requires_grad_()
        input_image2 = xbar_image.clone().requires_grad_()

        if input_image1.grad is not None:
            input_image1.grad.data.zero_()
            input_image2.grad.data.zero_()

        score = measure(ssl_model(input_image1), ssl_model(input_image2))
        score.backward()
        grads1.append(input_image1.grad.data)
        grads2.append(input_image2.grad.data)

    grads1 = torch.cat(grads1).mean(0).unsqueeze(0)
    grads2 = torch.cat(grads2).mean(0).unsqueeze(0)

    sailency1, _ = torch.max((mixed_images[0] * grads1).abs(), dim=1)
    sailency2, _ = torch.max((mixed_images[-1] * grads2).abs(), dim=1)

    if guided:     # remove handles after finishing
        for handle in handles:
            handle.remove()
            
    if blur_output:
        sailency1 = blur_sailency(sailency1)
        sailency2 = blur_sailency(sailency2)
            
    return sailency1, sailency2

def sailency(guided, ssl_model, img1, img2, blur_output):
    
    measure = nn.CosineSimilarity(dim=-1)
    
    if guided:
        handles = []
        for i, module in enumerate(ssl_model.modules()):
            if isinstance(module, nn.ReLU):
                handles.append(module.register_backward_hook(relu_hook_function))
                
    input_image1 = img1.clone().requires_grad_()
    input_image2 = img2.clone().requires_grad_()
    score = measure(ssl_model(input_image1), ssl_model(input_image2))
    score.backward()
    grads1 = input_image1.grad.data
    grads2 = input_image2.grad.data   
    sailency1, _ = torch.max((img1 * grads1).abs(), dim=1)
    sailency2, _ = torch.max((img2 * grads2).abs(), dim=1)

    if guided:     # remove handles after finishing
        for handle in handles:
            handle.remove()
            
    if blur_output:
        sailency1 = blur_sailency(sailency1)
        sailency2 = blur_sailency(sailency2)
            
    return sailency1, sailency2

def smooth_grad(guided, ssl_model, img1, img2, blur_output, steps = 50):
    
    measure = nn.CosineSimilarity(dim=-1)
    sigma = 0.15 / (torch.max(img1) - torch.min(img1)).item()
    
    if guided:
        handles = []
        for i, module in enumerate(ssl_model.modules()):
            if isinstance(module, nn.ReLU):
                handles.append(module.register_backward_hook(relu_hook_function))
                
    noise_images1 = []
    noise_images2 = []
    
    for _ in range(steps):
        noise = torch.zeros_like(img1).normal_(0, sigma)
        noise_images1.append(img1 + noise)   
        noise_images2.append(img2 + noise)
                
    grads1 = []
    grads2 = []

    for n1, n2 in zip(noise_images1, noise_images2):  

        ssl_model.zero_grad()
        input_image1 = n1.clone().requires_grad_()
        input_image2 = n2.clone().requires_grad_()

        if input_image1.grad is not None:
            input_image1.grad.data.zero_()
            input_image2.grad.data.zero_()

        score = measure(ssl_model(input_image1), ssl_model(input_image2))
        score.backward()
        grads1.append(input_image1.grad.data)
        grads2.append(input_image2.grad.data)

    grads1 = torch.cat(grads1).mean(0).unsqueeze(0)
    grads2 = torch.cat(grads2).mean(0).unsqueeze(0)   
    sailency1, _ = torch.max((img1 * grads1 ).abs(), dim=1)
    sailency2, _ = torch.max((img2 * grads2).abs(), dim=1)

    if guided:     # remove handles after finishing
        for handle in handles:
            handle.remove()
            
    if blur_output:
        sailency1 = blur_sailency(sailency1)
        sailency2 = blur_sailency(sailency2)
            
    return sailency1, sailency2


class GradCAM(nn.Module):
    
    def __init__(self, ssl_model):
        super(GradCAM, self).__init__()
        
        self.gradients = {}
        self.features = {}
        
        self.feature_extractor = ssl_model.encoder.net
        self.contrastive_head = ssl_model.contrastive_head
        self.measure = nn.CosineSimilarity(dim=-1)
        
    def save_grads(self, img_index):
    
        def hook(grad):
            self.gradients[img_index] = grad.detach()

        return hook
    
    def save_features(self, img_index, feats):
        self.features[img_index] = feats.detach()
    
    def forward(self, img1, img2):
        
        features1 = self.feature_extractor(img1)
        features2 = self.feature_extractor(img2)
        
        self.save_features('1', features1)
        self.save_features('2', features2)
        
        h1 = features1.register_hook(self.save_grads('1'))
        h2 = features2.register_hook(self.save_grads('2'))
        
        out1, out2 = features1.mean(dim=[2, 3]), features2.mean(dim=[2, 3])
        out1, out2 = self.contrastive_head(out1), self.contrastive_head(out2)
        score = self.measure(out1, out2)
        
        return score
    
def weight_activation(feats, grads):
    cam =  feats * F.relu(grads)
    cam = torch.sum(cam, dim=1).squeeze().cpu().detach().numpy()
    return cam

def get_gradcam(ssl_model, img1, img2):
    
    grad_cam = GradCAM(ssl_model).to(device)
    score = grad_cam(img1, img2)
    grad_cam.zero_grad()
    score.backward()

    cam1 = weight_activation(grad_cam.features['1'], grad_cam.gradients['1'])
    cam2 = weight_activation(grad_cam.features['2'], grad_cam.gradients['2'])
    return cam1, cam2

def get_interactioncam(ssl_model, img1, img2, reduction, grad_interact = False):
    
    grad_cam = GradCAM(ssl_model).to(device)
    score = grad_cam(img1, img2)
    grad_cam.zero_grad()
    score.backward()
    
    G1 = grad_cam.gradients['1']
    G2 = grad_cam.gradients['2']
    
    if grad_interact:
        B, D, H, W = G1.size()
        G1_ = G1.permute(0,2,3,1).view(B, H * W, D)
        G2_ = G2.permute(0,2,3,1).view(B, H * W, D)
        G_ = torch.bmm(G1_.permute(0,2,1), G2_)  # (B, D, D)
        G1, _ = torch.max(G_, dim = -1)   # (B, D)
        G2, _ = torch.max(G_, dim = 1)    # (B, D)
        G1 = G1.unsqueeze(-1).unsqueeze(-1)
        G2 = G2.unsqueeze(-1).unsqueeze(-1)

    if reduction == 'mean':
        joint_weight = grad_cam.features['1'].mean([2,3]) * grad_cam.features['2'].mean([2,3])
    elif reduction == 'max':
        max_pooled1 = F.max_pool2d(grad_cam.features['1'], kernel_size=grad_cam.features['1'].size()[2:]).squeeze(-1).squeeze(-1)
        max_pooled2 = F.max_pool2d(grad_cam.features['2'], kernel_size=grad_cam.features['2'].size()[2:]).squeeze(-1).squeeze(-1)
        joint_weight = max_pooled1 * max_pooled2
    else:
        B, D, H, W = grad_cam.features['1'].size()
        reshaped1 = grad_cam.features['1'].permute(0,2,3,1).reshape(B, H * W, D)
        reshaped2 = grad_cam.features['2'].permute(0,2,3,1).reshape(B, H * W, D)
        features1_query, features2_query = reshaped1.mean(1).unsqueeze(1), reshaped2.mean(1).unsqueeze(1)
        attn1 = (features1_query @ reshaped1.transpose(-2, -1)).softmax(dim=-1)
        attn2 = (features2_query @ reshaped2.transpose(-2, -1)).softmax(dim=-1)
        att_reduced1 = (attn1 @ reshaped1).squeeze(1)
        att_reduced2 = (attn2 @ reshaped2).squeeze(1)
        joint_weight = att_reduced1 * att_reduced2
        
    joint_weight = joint_weight.unsqueeze(-1).unsqueeze(-1).expand_as(grad_cam.features['1'])
    
    feats1 = grad_cam.features['1'] * joint_weight
    feats2 = grad_cam.features['2'] * joint_weight

    cam1 = weight_activation(feats1, G1)
    cam2 = weight_activation(feats2, G2)
    
    return cam1, cam2