File size: 14,285 Bytes
835894d
 
 
 
 
 
 
 
da85b9a
835894d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import torch
import numpy as np
import torch.nn as nn
import torchvision.transforms as transforms
import matplotlib
import matplotlib.pyplot as plt
from PIL import Image 
import cv2
import gradio as gr
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

from data_transforms import normal_transforms, no_shift_transforms, ig_transforms, modify_transforms
from utils import overlay_heatmap, viz_map, show_image, deprocess, get_ssl_model, fig2img
from methods import occlusion, occlusion_context_agnositc, pairwise_occlusion
from methods import get_difference
from methods import create_mixed_images, averaged_transforms, sailency, smooth_grad 
from methods import get_sample_dataset, pixel_invariance, get_gradcam, get_interactioncam

matplotlib.use('Agg')

def load_model(model_name):
  
  global network, ssl_model, denorm
  if model_name == "simclrv2 (1X)":
    variant = '1x'
    network = 'simclrv2'
    denorm = False

  elif model_name == "simclrv2 (2X)":
    variant = '2x'
    network = 'simclrv2'
    denorm = False

  elif model_name == "Barlow Twins":
    network = 'barlow_twins'
    variant = None
    denorm = True

  ssl_model = get_ssl_model(network, variant)  

  if network != 'simclrv2':
    global normal_transforms, no_shift_transforms, ig_transforms
    normal_transforms, no_shift_transforms, ig_transforms = modify_transforms(normal_transforms, no_shift_transforms, ig_transforms)

  return "Loaded Model Successfully"

def load_or_augment_images(img1_input, img2_input, use_aug):   

  global img_main, img1, img2

  img_main = img1_input.convert('RGB')

  if use_aug:
    img1 = normal_transforms['pure'](img_main).unsqueeze(0).to(device)
    img2 = normal_transforms['aug'](img_main).unsqueeze(0).to(device)
  else:
    img1 = normal_transforms['pure'](img_main).unsqueeze(0).to(device)
    img2 = img2_input.convert('RGB')
    img2 = normal_transforms['pure'](img2).unsqueeze(0).to(device)

  similarity = "Similarity: {:.3f}".format(nn.CosineSimilarity(dim=-1)(ssl_model(img1), ssl_model(img2)).item())

  fig, axs = plt.subplots(1, 2, figsize=(10,10))
  np.vectorize(lambda ax:ax.axis('off'))(axs)

  axs[0].imshow(show_image(img1, denormalize = denorm))  
  axs[1].imshow(show_image(img2, denormalize = denorm))
  plt.subplots_adjust(wspace=0.1, hspace = 0)
  pil_output = fig2img(fig)
  return pil_output, similarity

def run_occlusion(w_size, stride):
  heatmap1, heatmap2 = occlusion(img1, img2, ssl_model, w_size = 64, stride = 8, batch_size = 32)
  heatmap1_ca, heatmap2_ca = occlusion_context_agnositc(img1, img2, ssl_model, w_size = 64, stride = 8, batch_size = 32)
  heatmap1_po, heatmap2_po = pairwise_occlusion(img1, img2, ssl_model, batch_size = 32, erase_scale = (0.1, 0.3), erase_ratio = (1, 1.5), num_erases = 100)

  added_image1 = overlay_heatmap(img1, heatmap1, denormalize = denorm)
  added_image2 = overlay_heatmap(img2, heatmap2, denormalize = denorm)
  added_image1_ca = overlay_heatmap(img1, heatmap1_ca, denormalize = denorm)
  added_image2_ca = overlay_heatmap(img2, heatmap2_ca, denormalize = denorm)

  fig, axs = plt.subplots(2, 4, figsize=(20,10))
  np.vectorize(lambda ax:ax.axis('off'))(axs)

  axs[0, 0].imshow(show_image(img1, denormalize = denorm))
  axs[0, 1].imshow(added_image1)
  axs[0, 1].set_title("Conditional Occlusion")
  axs[0, 2].imshow(added_image1_ca)
  axs[0, 2].set_title("CA Cond. Occlusion")
  axs[0, 3].imshow((deprocess(img1, denormalize = denorm) * heatmap1_po[:,:,None]).astype('uint8'))
  axs[0, 3].set_title("Pairwise Occlusion")
  axs[1, 0].imshow(show_image(img2, denormalize = denorm))
  axs[1, 1].imshow(added_image2)
  axs[1, 2].imshow(added_image2_ca)
  axs[1, 3].imshow((deprocess(img2, denormalize = denorm) * heatmap2_po[:,:,None]).astype('uint8'))
  plt.subplots_adjust(wspace=0, hspace = 0.01)
  pil_output = fig2img(fig)
  return pil_output

def get_model_difference(later):

  imagenet_images, ssl_images = get_difference(ssl_model = ssl_model, baseline = 'imagenet', image = img2, lr = 1e4, 
                                              l2_weight = 0.1, alpha_weight = 1e-7, alpha_power = 6, tv_weight = 1e-8, 
                                              init_scale = 0.1, network = network)

  fig, axs = plt.subplots(3, 3, figsize=(10,10))
  np.vectorize(lambda ax:ax.axis('off'))(axs)

  for aa, (in_img, ssl_img) in enumerate(zip(imagenet_images, ssl_images)):
      axs[aa,0].imshow(deprocess(img2, denormalize = denorm))
      axs[aa,1].imshow(deprocess(in_img))
      axs[aa,2].imshow(deprocess(ssl_img))
      
  axs[0,0].set_title("Original Image")
  axs[0,1].set_title("Synthesized (cls)")
  axs[0,2].set_title("Synthesized (contastive)")

  plt.subplots_adjust(wspace=0.01, hspace = 0.01)
  pil_output = fig2img(fig)
  return pil_output

def get_avg_trasforms(transform_type, add_noise, blur_output, guided):

  mixed_images = create_mixed_images(transform_type = transform_type, 
                                    ig_transforms = ig_transforms, 
                                    step = 0.1, 
                                    img_path = img_main, 
                                    add_noise = add_noise)

  # vanilla gradients (for comparison purposes)
  sailency1_van, sailency2_van = sailency(guided = guided, ssl_model = ssl_model, 
                                          img1 = mixed_images[0], img2 = mixed_images[-1], 
                                          blur_output = blur_output)

  # smooth gradients (for comparison purposes)
  sailency1_s, sailency2_s = smooth_grad(guided = guided, ssl_model = ssl_model, 
                                        img1 = mixed_images[0], img2 = mixed_images[-1], 
                                        blur_output = blur_output, steps = 50)

  # integrated transform
  sailency1, sailency2 = averaged_transforms(guided = guided, ssl_model = ssl_model, 
                                            mixed_images = mixed_images, 
                                            blur_output = blur_output)

  fig, axs = plt.subplots(2, 4, figsize=(20,10))
  np.vectorize(lambda ax:ax.axis('off'))(axs)

  axs[0,0].imshow(show_image(mixed_images[0], denormalize = denorm))
  axs[0,1].imshow(show_image(sailency1_van.detach(), squeeze = False).squeeze(), cmap = plt.cm.jet)
  axs[0,1].imshow(show_image(mixed_images[0], denormalize = denorm), alpha=0.5)
  axs[0,1].set_title("Vanilla Gradients")
  axs[0,2].imshow(show_image(sailency1_s.detach(), squeeze = False).squeeze(), cmap = plt.cm.jet)
  axs[0,2].imshow(show_image(mixed_images[0], denormalize = denorm), alpha=0.5)
  axs[0,2].set_title("Smooth Gradients")
  axs[0,3].imshow(show_image(sailency1.detach(), squeeze = False).squeeze(), cmap = plt.cm.jet)
  axs[0,3].imshow(show_image(mixed_images[0], denormalize = denorm), alpha=0.5)
  axs[0,3].set_title("Integrated Transform")
  axs[1,0].imshow(show_image(mixed_images[-1], denormalize = denorm))
  axs[1,1].imshow(show_image(sailency2_van.detach(), squeeze = False).squeeze(), cmap = plt.cm.jet)
  axs[1,1].imshow(show_image(mixed_images[-1], denormalize = denorm), alpha=0.5)
  axs[1,2].imshow(show_image(sailency2_s.detach(), squeeze = False).squeeze(), cmap = plt.cm.jet)
  axs[1,2].imshow(show_image(mixed_images[-1], denormalize = denorm), alpha=0.5)
  axs[1,3].imshow(show_image(sailency2.detach(), squeeze = False).squeeze(), cmap = plt.cm.jet)
  axs[1,3].imshow(show_image(mixed_images[-1], denormalize = denorm), alpha=0.5)

  plt.subplots_adjust(wspace=0.02, hspace = 0.02)
  pil_output = fig2img(fig)
  return pil_output

def get_cams():

  gradcam1, gradcam2 = get_gradcam(ssl_model, img1, img2)
  intcam1_mean, intcam2_mean = get_interactioncam(ssl_model, img1, img2, reduction = 'mean')
  intcam1_maxmax, intcam2_maxmax = get_interactioncam(ssl_model, img1, img2, reduction = 'max', grad_interact = True)
  intcam1_attnmax, intcam2_attnmax = get_interactioncam(ssl_model, img1, img2, reduction = 'attn', grad_interact = True)

  fig, axs = plt.subplots(2, 5, figsize=(20,8))
  np.vectorize(lambda ax:ax.axis('off'))(axs)

  axs[0,0].imshow(show_image(img1[0], squeeze = False, denormalize = denorm))
  axs[0,1].imshow(overlay_heatmap(img1, gradcam1, denormalize = denorm))
  axs[0,1].set_title("Grad-CAM")
  axs[0,2].imshow(overlay_heatmap(img1, intcam1_mean, denormalize = denorm))
  axs[0,2].set_title("IntCAM Mean")
  axs[0,3].imshow(overlay_heatmap(img1, intcam1_maxmax, denormalize = denorm))
  axs[0,3].set_title("IntCAM Max + IntGradMax")
  axs[0,4].imshow(overlay_heatmap(img1, intcam1_attnmax, denormalize = denorm))
  axs[0,4].set_title("IntCAM Attn + IntGradMax")

  axs[1,0].imshow(show_image(img2[0], squeeze = False, denormalize = denorm))
  axs[1,1].imshow(overlay_heatmap(img2, gradcam2, denormalize = denorm))
  axs[1,2].imshow(overlay_heatmap(img2, intcam2_mean, denormalize = denorm))
  axs[1,3].imshow(overlay_heatmap(img2, intcam2_maxmax, denormalize = denorm))
  axs[1,4].imshow(overlay_heatmap(img2, intcam2_attnmax, denormalize = denorm))

  plt.subplots_adjust(wspace=0.01, hspace = 0.01)
  pil_output = fig2img(fig)
  return pil_output

def get_pixel_invariance():

  data_samples1, data_samples2, data_labels, labels_invariance = get_sample_dataset(img_path = img_main, 
                                                                                    num_augments = 1000, 
                                                                                    batch_size =  32, 
                                                                                    no_shift_transforms = no_shift_transforms, 
                                                                                    ssl_model = ssl_model, 
                                                                                    n_components = 10)

  inv_heatmap = pixel_invariance(data_samples1 = data_samples1, data_samples2 = data_samples2, data_labels = data_labels,
                                labels_invariance = labels_invariance, resize_transform = transforms.Resize, size = 64, 
                                epochs = 1000, learning_rate = 0.1, l1_weight = 0.2, zero_small_values = True, 
                                blur_output = True, nmf_weight = 0)

  inv_heatmap_nmf = pixel_invariance(data_samples1 = data_samples1, data_samples2 = data_samples2, data_labels = data_labels,
                                    labels_invariance = labels_invariance, resize_transform = transforms.Resize, size = 64, 
                                    epochs = 100, learning_rate = 0.1, l1_weight = 0.2, zero_small_values = True, 
                                    blur_output = True, nmf_weight = 1)

  fig, axs = plt.subplots(1, 2, figsize=(10,5))
  np.vectorize(lambda ax:ax.axis('off'))(axs)

  axs[0].imshow(viz_map(img_main, inv_heatmap))
  axs[0].set_title("Heatmap w/o NMF")
  axs[1].imshow(viz_map(img_main, inv_heatmap_nmf))
  axs[1].set_title("Heatmap w/ NMF")
  plt.subplots_adjust(wspace=0.01, hspace = 0.01)

  pil_output = fig2img(fig)
  return pil_output

xai = gr.Blocks()

with xai:
  gr.Markdown("<h1>Methods for Explaining Contrastive Learning, CVPR 2023 Submission</h1>")
  gr.Markdown("The interface is simplified as much as possible with only necessary options to select for each method. Please use our Google Colab demo for more flexibility.")
  
  with gr.Row():
    model_name = gr.Dropdown(["simclrv2 (1X)", "simclrv2 (2X)", "Barlow Twins"], label="Choose Model and press \"Load Model\"")
    load_model_button = gr.Button("Load Model")
    status_or_similarity = gr.inputs.Textbox(label = "Status")
  with gr.Row():
    gr.Markdown("You can either load two images or load a single image and augment it to get the second image (in that case please check the \"Use Augmentations\" button). After that, please press on \"Show Images\"")
    img1 = gr.Image(type='pil', label = "First Image")
    img2 = gr.Image(type='pil', label = "Second Image")
  with gr.Row():
    use_aug = gr.Checkbox(value = False, label = "Use Augmentations")
    load_images_button = gr.Button("Show Images")
    
  gr.Markdown("Choose a method from the different tabs. You may leave the default options as they are and press on \"Run\" ")
  with gr.Row():
    with gr.Column():
      with gr.Tabs():
        with gr.TabItem("Interaction-CAM"):
          cams_button = gr.Button("Get Heatmaps")
        with gr.TabItem("Perturbation Methods"):
          w_size = gr.Number(value = 64, label = "Occlusion Window Size", precision = 0)
          stride = gr.Number(value = 8, label = "Occlusion Stride", precision = 0)
          occlusion_button = gr.Button("Get Heatmap")
        with gr.TabItem("Averaged Transforms"):
          transform_type = gr.inputs.Radio(label="Data Augment", choices=['color_jitter', 'blur', 'grayscale', 'solarize', 'combine'], default="combine")
          add_noise = gr.Checkbox(value = True, label = "Add Noise")
          blur_output = gr.Checkbox(value = True, label = "Blur Output")
          guided = gr.Checkbox(value = True, label = "Guided Backprop")
          avgtransform_button = gr.Button("Get Saliency")
        with gr.TabItem("Pixel Invariance"):
          gr.Markdown("Note: Invariance map will be obtained for the first image")
          pixel_invariance_button = gr.Button("Get Invariance Map")
        with gr.TabItem("Image Synthesization"):
          baseline = gr.inputs.Radio(label="Compare With", choices=["Supervised Classification"], default="Supervised Classification")
          modeldiff_button = gr.Button("Compare")

    with gr.Column():
      output_image = gr.Image(type='pil', show_label = False)

  load_model_button.click(load_model, inputs = model_name, outputs = status_or_similarity)
  load_images_button.click(load_or_augment_images, inputs = [img1, img2, use_aug], outputs = [output_image, status_or_similarity])
  occlusion_button.click(run_occlusion, inputs=[w_size,stride], outputs=output_image)
  modeldiff_button.click(get_model_difference, inputs = baseline, outputs = output_image)
  avgtransform_button.click(get_avg_trasforms, inputs = [transform_type, add_noise, blur_output, guided], outputs = output_image)
  cams_button.click(get_cams, inputs = [], outputs = output_image) 
  pixel_invariance_button.click(get_pixel_invariance, inputs = [], outputs = output_image)

xai.launch()