File size: 7,855 Bytes
b157c29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import torch
import torch.nn as nn
import torch.nn.functional as F
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

"""
from https://github.com/Separius/SimCLRv2-Pytorch
"""

BATCH_NORM_EPSILON = 1e-5
BATCH_NORM_DECAY = 0.9  # == pytorch's default value as well

class BatchNormRelu(nn.Sequential):
    
    def __init__(self, num_channels, relu=True):
        super().__init__(nn.BatchNorm2d(num_channels, eps=BATCH_NORM_EPSILON), 
                         nn.ReLU() if relu else nn.Identity())


def conv(in_channels, out_channels, kernel_size=3, stride=1, bias=False):
    return nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size,
                     stride=stride, padding=(kernel_size - 1) // 2, bias=bias)


class SelectiveKernel(nn.Module):
    
    def __init__(self, in_channels, out_channels, stride, sk_ratio, min_dim=32):
        super().__init__()
        assert sk_ratio > 0.0
        self.main_conv = nn.Sequential(conv(in_channels, 2 * out_channels, stride=stride),
                                       BatchNormRelu(2 * out_channels))
        mid_dim = max(int(out_channels * sk_ratio), min_dim)
        self.mixing_conv = nn.Sequential(conv(out_channels, mid_dim, kernel_size=1), 
                                         BatchNormRelu(mid_dim),
                                         conv(mid_dim, 2 * out_channels, kernel_size=1))

    def forward(self, x):
        x = self.main_conv(x)
        x = torch.stack(torch.chunk(x, 2, dim=1), dim=0)  # 2, B, C, H, W
        g = x.sum(dim=0).mean(dim=[2, 3], keepdim=True)
        m = self.mixing_conv(g)
        m = torch.stack(torch.chunk(m, 2, dim=1), dim=0)  # 2, B, C, 1, 1
        return (x * F.softmax(m, dim=0)).sum(dim=0)


class Projection(nn.Module):
    def __init__(self, in_channels, out_channels, stride, sk_ratio=0):
        super().__init__()
        if sk_ratio > 0:
            self.shortcut = nn.Sequential(nn.ZeroPad2d((0, 1, 0, 1)),
                                          nn.AvgPool2d(kernel_size=2, stride=stride, padding=0),
                                          conv(in_channels, out_channels, kernel_size=1))
        else:
            self.shortcut = conv(in_channels, out_channels, kernel_size=1, stride=stride)
            
        self.bn = BatchNormRelu(out_channels, relu=False)

    def forward(self, x):
        return self.bn(self.shortcut(x))


class BottleneckBlock(nn.Module):
    expansion = 4

    def __init__(self, in_channels, out_channels, stride, sk_ratio=0, use_projection=False):
        super().__init__()
        if use_projection:
            self.projection = Projection(in_channels, out_channels * 4, stride, sk_ratio)
        else:
            self.projection = nn.Identity()
            
        ops = [conv(in_channels, out_channels, kernel_size=1), BatchNormRelu(out_channels)]
        if sk_ratio > 0:
            ops.append(SelectiveKernel(out_channels, out_channels, stride, sk_ratio))
        else:
            ops.append(conv(out_channels, out_channels, stride=stride))
            ops.append(BatchNormRelu(out_channels))
            
        ops.append(conv(out_channels, out_channels * 4, kernel_size=1))
        ops.append(BatchNormRelu(out_channels * 4, relu=False))
        self.net = nn.Sequential(*ops)

    def forward(self, x):
        shortcut = self.projection(x)
        return F.relu(shortcut + self.net(x))


class Blocks(nn.Module):
    def __init__(self, num_blocks, in_channels, out_channels, stride, sk_ratio=0):
        super().__init__()
        self.blocks = nn.ModuleList([BottleneckBlock(in_channels, out_channels, stride, sk_ratio, True)])
        self.channels_out = out_channels * BottleneckBlock.expansion
        for _ in range(num_blocks - 1):
            self.blocks.append(BottleneckBlock(self.channels_out, out_channels, 1, sk_ratio))

    def forward(self, x):
        for b in self.blocks:
            x = b(x)
        return x


class Stem(nn.Sequential):
    def __init__(self, sk_ratio, width_multiplier):
        ops = []
        channels = 64 * width_multiplier // 2
        if sk_ratio > 0:
            ops.append(conv(3, channels, stride=2))
            ops.append(BatchNormRelu(channels))
            ops.append(conv(channels, channels))
            ops.append(BatchNormRelu(channels))
            ops.append(conv(channels, channels * 2))
        else:
            ops.append(conv(3, channels * 2, kernel_size=7, stride=2))
        ops.append(BatchNormRelu(channels * 2))
        ops.append(nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
        super().__init__(*ops)


class ResNet(nn.Module):
    def __init__(self, layers, width_multiplier, sk_ratio):
        super().__init__()
        ops = [Stem(sk_ratio, width_multiplier)]
        channels_in = 64 * width_multiplier
        ops.append(Blocks(layers[0], channels_in, 64 * width_multiplier, 1, sk_ratio))
        channels_in = ops[-1].channels_out
        ops.append(Blocks(layers[1], channels_in, 128 * width_multiplier, 2, sk_ratio))
        channels_in = ops[-1].channels_out
        ops.append(Blocks(layers[2], channels_in, 256 * width_multiplier, 2, sk_ratio))
        channels_in = ops[-1].channels_out
        ops.append(Blocks(layers[3], channels_in, 512 * width_multiplier, 2, sk_ratio))
        channels_in = ops[-1].channels_out
        self.channels_out = channels_in
        self.net = nn.Sequential(*ops)
        self.fc = nn.Linear(channels_in, 1000)

    def forward(self, x, apply_fc=False):
        h = self.net(x).mean(dim=[2, 3])
        if apply_fc:
            h = self.fc(h)
        return h


class ContrastiveHead(nn.Module):
    def __init__(self, channels_in, out_dim=128, num_layers=3):
        super().__init__()
        self.layers = nn.ModuleList()
        for i in range(num_layers):
            if i != num_layers - 1:
                dim, relu = channels_in, True
            else:
                dim, relu = out_dim, False
            self.layers.append(nn.Linear(channels_in, dim, bias=False))
            bn = nn.BatchNorm1d(dim, eps=BATCH_NORM_EPSILON, affine=True)
            if i == num_layers - 1:
                nn.init.zeros_(bn.bias)
            self.layers.append(bn)
            if relu:
                self.layers.append(nn.ReLU())

    def forward(self, x):
        for b in self.layers:
            x = b(x)
        return x


def get_resnet(depth=50, width_multiplier=1, sk_ratio=0):  # sk_ratio=0.0625 is recommended
    layers = {50: [3, 4, 6, 3], 101: [3, 4, 23, 3], 152: [3, 8, 36, 3], 200: [3, 24, 36, 3]}[depth]
    resnet = ResNet(layers, width_multiplier, sk_ratio)
    return resnet, ContrastiveHead(resnet.channels_out)


def name_to_params(checkpoint):
    sk_ratio = 0.0625 if '_sk1' in checkpoint else 0
    if 'r50_' in checkpoint:
        depth = 50
    elif 'r101_' in checkpoint:
        depth = 101
    elif 'r152_' in checkpoint:
        depth = 152
    else:
        raise NotImplementedError

    if '_1x_' in checkpoint:
        width = 1
    elif '_2x_' in checkpoint:
        width = 2
    elif '_3x_' in checkpoint:
        width = 3
    else:
        raise NotImplementedError

    return depth, width, sk_ratio

class SimCLRv2(nn.Module):
    def __init__(self, model, head):
        super(SimCLRv2, self).__init__()
        
        self.encoder = model
        self.contrastive_head = head

    def forward(self, x):
        x = self.encoder(x)
        x = self.contrastive_head(x)
        return x
    
def get_simclr2_model(ckpt_path):
    depth, width, sk_ratio = name_to_params(ckpt_path)
    model, head = get_resnet(depth, width, sk_ratio)
    checkpoint = torch.load('pretrained_models/simclr2_models/' + ckpt_path)
    model.load_state_dict(checkpoint['resnet'])
    head.load_state_dict(checkpoint['head'])
    del model.fc
    simclr2 = SimCLRv2(model, head)
    return simclr2.to(device)