Spaces:
Sleeping
Sleeping
File size: 12,746 Bytes
57dbe6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
import os
import datetime
import time
import requests
import pandas as pd
import json
from geopy.geocoders import Nominatim
def convert_date_to_unix(x):
"""
Convert datetime to unix time in milliseconds.
"""
dt_obj = datetime.datetime.strptime(str(x), '%Y-%m-%d %H:%M:%S')
dt_obj = int(dt_obj.timestamp() * 1000)
return dt_obj
def get_city_coordinates(city_name: str):
"""
Takes city name and returns its latitude and longitude (rounded to 2 digits after dot).
"""
# Initialize Nominatim API (for getting lat and long of the city)
geolocator = Nominatim(user_agent="MyApp")
city = geolocator.geocode(city_name)
latitude = round(city.latitude, 2)
longitude = round(city.longitude, 2)
return latitude, longitude
##################################### EEA
def convert_to_daily(df, pollutant: str):
"""
Returns DataFrame where pollutant column is resampled to days and rounded.
"""
res_df = df.copy()
# convert dates in 'time' column
res_df["date"] = pd.to_datetime(res_df["date"])
# I want data daily, not hourly (mean per each day = 1 datarow per 1 day)
res_df = res_df.set_index('date')
res_df = res_df[pollutant].resample('1d').mean().reset_index()
res_df[pollutant] = res_df[pollutant].fillna(res_df[pollutant].median())
res_df[pollutant] = res_df[pollutant].apply(lambda x: round(x, 0))
return res_df
def find_fullest_csv(csv_links: list, year: str):
candidates = [link for link in csv_links if str(year) in link]
biggest_df = pd.read_csv(candidates[0])
for link in candidates[1:]:
_df = pd.read_csv(link)
if len(biggest_df) < len(_df):
biggest_df = _df
return biggest_df
def get_air_quality_from_eea(city_name: str,
pollutant: str,
start_year: str,
end_year: str):
"""
Takes city name, daterange and returns pandas DataFrame with daily air quality data.
It parses data by 1-year batches, so please specify years, not dates. (example: "2014", "2022"...)
EEA means European Environmental Agency. So it has data for Europe Union countries ONLY.
"""
start_of_cell = time.time()
params = {
'CountryCode': '',
'CityName': city_name,
'Pollutant': pollutant.upper(),
'Year_from': start_year,
'Year_to': end_year,
'Station': '',
'Source': 'All',
'Samplingpoint': '',
'Output': 'TEXT',
'UpdateDate': '',
'TimeCoverage': 'Year'
}
# observations endpoint
base_url = "https://fme.discomap.eea.europa.eu/fmedatastreaming/AirQualityDownload/AQData_Extract.fmw?"
try:
response = requests.get(base_url, params=params)
except ConnectionError:
response = requests.get(base_url, params=params)
response.encoding = response.apparent_encoding
csv_links = response.text.split("\r\n")
res_df = pd.DataFrame()
target_year = int(start_year)
for year in range(int(start_year), int(end_year) + 1):
try:
# find the fullest, the biggest csv file with observations for this particular year
_df = find_fullest_csv(csv_links, year)
# append it to res_df
res_df = pd.concat([res_df, _df])
except IndexError:
print(f"!! Missing data for {year} for {city} city.")
pass
pollutant = pollutant.lower()
if pollutant == "pm2.5":
pollutant = "pm2_5"
res_df = res_df.rename(columns={
'DatetimeBegin': 'date',
'Concentration': pollutant
})
# cut timezones info
res_df['date'] = res_df['date'].apply(lambda x: x[:-6])
# convert dates in 'time' column
res_df['date'] = pd.to_datetime(res_df['date'])
res_df = convert_to_daily(res_df, pollutant)
res_df['city_name'] = city_name
res_df = res_df[['city_name', 'date', pollutant.lower()]]
end_of_cell = time.time()
print(f"Processed {pollutant.upper()} for {city_name} since {start_year} till {end_year}.")
print(f"Took {round(end_of_cell - start_of_cell, 2)} sec.\n")
return res_df
##################################### USEPA
city_code_dict = {}
pollutant_dict = {
'CO': '42101',
'SO2': '42401',
'NO2': '42602',
'O3': '44201',
'PM10': '81102',
'PM2.5': '88101'
}
def get_city_code(city_name: str):
"Encodes city name to be used later for data parsing using USEPA."
if city_code_dict:
city_full = [i for i in city_code_dict.keys() if city_name in i][0]
return city_code_dict[city_full]
else:
params = {
"email": "test@aqs.api",
"key": "test"
}
response = requests.get("https://aqs.epa.gov/data/api/list/cbsas?", params)
response_json = response.json()
data = response_json["Data"]
for item in data:
city_code_dict[item['value_represented']] = item['code']
return get_city_code(city_name)
def get_air_quality_from_usepa(city_name: str,
pollutant: str,
start_date: str,
end_date: str):
"""
Takes city name, daterange and returns pandas DataFrame with daily air quality data.
USEPA means United States Environmental Protection Agency. So it has data for US ONLY.
"""
start_of_cell = time.time()
res_df = pd.DataFrame()
for start_date_, end_date_ in make_date_intervals(start_date, end_date):
params = {
"email": "test@aqs.api",
"key": "test",
"param": pollutant_dict[pollutant.upper().replace("_", ".")], # encoded pollutant
"bdate": start_date_,
"edate": end_date_,
"cbsa": get_city_code(city_name) # Core-based statistical area
}
# observations endpoint
base_url = "https://aqs.epa.gov/data/api/dailyData/byCBSA?"
response = requests.get(base_url, params=params)
response_json = response.json()
df_ = pd.DataFrame(response_json["Data"])
pollutant = pollutant.lower()
if pollutant == "pm2.5":
pollutant = "pm2_5"
df_ = df_.rename(columns={
'date_local': 'date',
'arithmetic_mean': pollutant
})
# convert dates in 'date' column
df_['date'] = pd.to_datetime(df_['date'])
df_['city_name'] = city_name
df_ = df_[['city_name', 'date', pollutant]]
res_df = pd.concat([res_df, df_])
# there are duplicated rows (several records for the same day and station). get rid of it.
res_df = res_df.groupby(['date', 'city_name'], as_index=False)[pollutant].mean()
res_df[pollutant] = round(res_df[pollutant], 1)
end_of_cell = time.time()
print(f"Processed {pollutant.upper()} for {city_name} since {start_date} till {end_date}.")
print(f"Took {round(end_of_cell - start_of_cell, 2)} sec.\n")
return res_df
def make_date_intervals(start_date, end_date):
start_dt = datetime.datetime.strptime(start_date, '%Y-%m-%d')
end_dt = datetime.datetime.strptime(end_date, '%Y-%m-%d')
date_intervals = []
for year in range(start_dt.year, end_dt.year + 1):
year_start = datetime.datetime(year, 1, 1)
year_end = datetime.datetime(year, 12, 31)
interval_start = max(start_dt, year_start)
interval_end = min(end_dt, year_end)
if interval_start < interval_end:
date_intervals.append((interval_start.strftime('%Y%m%d'), interval_end.strftime('%Y%m%d')))
return date_intervals
##################################### Weather Open Meteo
def get_weather_data_from_open_meteo(city_name: str,
start_date: str,
end_date: str,
coordinates: list = None,
forecast: bool = False):
"""
Takes [city name OR coordinates] and returns pandas DataFrame with weather data.
Examples of arguments:
coordinates=(47.755, -122.2806), start_date="2023-01-01"
"""
start_of_cell = time.time()
if coordinates:
latitude, longitude = coordinates
else:
latitude, longitude = get_city_coordinates(city_name=city_name)
params = {
'latitude': latitude,
'longitude': longitude,
'daily': ["temperature_2m_max", "temperature_2m_min",
"precipitation_sum", "rain_sum", "snowfall_sum",
"precipitation_hours", "windspeed_10m_max",
"windgusts_10m_max", "winddirection_10m_dominant"],
'start_date': start_date,
'end_date': end_date,
'timezone': "Europe/London"
}
if forecast:
# historical forecast endpoint
base_url = 'https://api.open-meteo.com/v1/forecast'
else:
# historical observations endpoint
base_url = 'https://archive-api.open-meteo.com/v1/archive'
try:
response = requests.get(base_url, params=params)
except ConnectionError:
response = requests.get(base_url, params=params)
response_json = response.json()
res_df = pd.DataFrame(response_json["daily"])
res_df["city_name"] = city_name
# rename columns
res_df = res_df.rename(columns={
"time": "date",
"temperature_2m_max": "temperature_max",
"temperature_2m_min": "temperature_min",
"windspeed_10m_max": "wind_speed_max",
"winddirection_10m_dominant": "wind_direction_dominant",
"windgusts_10m_max": "wind_gusts_max"
})
# change columns order
res_df = res_df[
['city_name', 'date', 'temperature_max', 'temperature_min',
'precipitation_sum', 'rain_sum', 'snowfall_sum',
'precipitation_hours', 'wind_speed_max',
'wind_gusts_max', 'wind_direction_dominant']
]
# convert dates in 'date' column
res_df["date"] = pd.to_datetime(res_df["date"])
end_of_cell = time.time()
print(f"Parsed weather for {city_name} since {start_date} till {end_date}.")
print(f"Took {round(end_of_cell - start_of_cell, 2)} sec.\n")
return res_df
##################################### Air Quality data from Open Meteo
def get_aqi_data_from_open_meteo(city_name: str,
start_date: str,
end_date: str,
coordinates: list = None,
pollutant: str = "pm2_5"):
"""
Takes [city name OR coordinates] and returns pandas DataFrame with AQI data.
Examples of arguments:
...
coordinates=(47.755, -122.2806),
start_date="2023-01-01",
pollutant="no2"
...
"""
start_of_cell = time.time()
if coordinates:
latitude, longitude = coordinates
else:
latitude, longitude = get_city_coordinates(city_name=city_name)
pollutant = pollutant.lower()
if pollutant == "pm2.5":
pollutant = "pm2_5"
# make it work with both "no2" and "nitrogen_dioxide" passed.
if pollutant == "no2":
pollutant = "nitrogen_dioxide"
params = {
'latitude': latitude,
'longitude': longitude,
'hourly': [pollutant],
'start_date': start_date,
'end_date': end_date,
'timezone': "Europe/London"
}
# base endpoint
base_url = "https://air-quality-api.open-meteo.com/v1/air-quality"
try:
response = requests.get(base_url, params=params)
except ConnectionError:
response = requests.get(base_url, params=params)
response_json = response.json()
res_df = pd.DataFrame(response_json["hourly"])
# convert dates
res_df["time"] = pd.to_datetime(res_df["time"])
# resample to days
res_df = res_df.groupby(res_df['time'].dt.date).mean(numeric_only=True).reset_index()
res_df[pollutant] = round(res_df[pollutant], 1)
# rename columns
res_df = res_df.rename(columns={
"time": "date"
})
res_df["city_name"] = city_name
# change columns order
res_df = res_df[
['city_name', 'date', pollutant]
]
end_of_cell = time.time()
print(f"Processed {pollutant.upper()} for {city_name} since {start_date} till {end_date}.")
print(f"Took {round(end_of_cell - start_of_cell, 2)} sec.\n")
return res_df
|