File size: 6,607 Bytes
b6a1d8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import random
from sentence_transformers import SentenceTransformer
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
import numpy as np
import json
import matplotlib.pyplot as plt
import argparse
from utils import fix_seed
def parse_arguments():
parser = argparse.ArgumentParser(description="Zero-shot-CoT")
parser.add_argument(
"--task", type=str, default="strategyqa",
choices=["aqua", "gsm8k", "commonsensqa", "addsub", "multiarith", "strategyqa", "svamp", "singleeq", "coin_flip", "last_letters"], help="dataset used for experiment"
)
parser.add_argument(
"--max_ra_len", type=int, default=5, help="maximum number of reasoning chains"
)
parser.add_argument(
"--pred_file", type=str, default="log/multiarith_zero_shot_cot.log",
help="use the reasoning chains generated by zero-shot-cot."
)
parser.add_argument(
"--demo_save_dir", type=str, default="demos/multiarith", help="where to save the contructed demonstrations"
)
parser.add_argument("--random_seed", type=int, default=192, help="random seed")
parser.add_argument(
"--encoder", type=str, default="all-MiniLM-L6-v2", help="which sentence-transformer encoder for clustering"
)
parser.add_argument(
"--sampling", type=str, default="center", help="whether to sample the cluster center first"
)
parser.add_argument(
"--debug", type=bool, default=True, help="debug mode"
)
args = parser.parse_args()
return args
def main():
args = parse_arguments()
fix_seed(args.random_seed)
encoder = SentenceTransformer(args.encoder)
task = args.task
pred_file = args.pred_file
save_file = args.demo_save_dir
max_ra_len = args.max_ra_len
if task == "last_letters":
max_ra_len = 7
if task == "aqua" or task == "last_letters":
num_clusters = 4
elif task == "commonsensqa":
num_clusters = 7
elif task == "strategyqa":
num_clusters = 6
else:
num_clusters = 8
corpus = []
question = []
rationale = []
gold_ans = []
pred_ans = []
with open(pred_file, "r", encoding="utf-8") as fp:
answer_seg = ""
for line in fp:
if "Q: " in line:
c_question = line.strip()
if "A: " in line:
answer_seg = line
elif "Therefore" in line and "the answer" in line:
c_rationale = answer_seg
elif answer_seg != "":
answer_seg += line
if "pred_mode" in line:
c_pred_ans = line.split(":")[1].strip()
if "GT :" in line:
c_gold_ans = line.split(":")[1].strip()
c_rationale = c_rationale.replace("A: Let's think step by step.", "Let's think step by step.")
c_question = c_question + "\nA:"
corpus.append(c_question)
question.append(c_question)
rationale.append(c_rationale)
pred_ans.append(c_pred_ans)
if args.debug:
gold_ans.append(c_gold_ans)
answer_seg = ""
corpus_embeddings = encoder.encode(corpus)
# Perform kmean clustering
clustering_model = KMeans(n_clusters=num_clusters, random_state=args.random_seed)
clustering_model.fit(corpus_embeddings)
cluster_assignment = clustering_model.labels_
clustered_sentences = [[] for i in range(num_clusters)]
dist = clustering_model.transform(corpus_embeddings)
clustered_dists = [[] for i in range(num_clusters)]
clustered_idx = [[] for i in range(num_clusters)]
for sentence_id, cluster_id in enumerate(cluster_assignment):
clustered_sentences[cluster_id].append(corpus[sentence_id])
clustered_dists[cluster_id].append(dist[sentence_id][cluster_id])
clustered_idx[cluster_id].append(sentence_id)
demos = []
for i in range(len(clustered_dists)):
print("Cluster ", i+1)
tmp = list(map(list, zip(range(len(clustered_dists[i])), clustered_dists[i])))
top_min_dist = sorted(tmp, key=lambda x: x[1], reverse=False)
if not args.sampling == "center":
random.shuffle(top_min_dist)
for element in top_min_dist:
min_idx = element[0]
c_rationale = rationale[clustered_idx[i][min_idx]].strip()
c_pred_ans = pred_ans[clustered_idx[i][min_idx]].strip()
if len(question[clustered_idx[i][min_idx]].strip().split()) <= 60 \
and len(c_rationale.replace("\n\n", "\n").split("\n")) <= max_ra_len and c_rationale[-1] == "." and c_pred_ans != "":
if args.task in ["gsm8k", "multiarith", "singleeq", "addsub", "svamp"]:
if not (c_pred_ans.strip() in c_rationale.split(".")[-2] or c_pred_ans.strip() in c_rationale.split()[-10:]):
continue
c_question = question[clustered_idx[i][min_idx]]
c_rationale = c_rationale.replace("\n\n", "\n").replace("\n", " ").strip()
c_rationale = " ".join(c_rationale.split())
if args.debug:
c_gold_ans = gold_ans[clustered_idx[i][min_idx]]
else:
c_gold_ans = None
demo_element = {
"question": c_question,
"rationale": c_rationale,
"pred_ans": c_pred_ans,
"gold_ans": c_gold_ans,
}
demos.append(demo_element)
print(c_question)
print(c_rationale)
print(c_pred_ans)
print(c_gold_ans)
print("")
break
demos = {"demo": demos}
with open(args.demo_save_dir, 'w', encoding="utf-8") as write_f:
json.dump(demos, write_f, indent=4, ensure_ascii=False)
y_km = clustering_model.fit_predict(corpus_embeddings)
pca_model = PCA(n_components=2, random_state=args.random_seed)
transformed = pca_model.fit_transform(corpus_embeddings)
centers = pca_model.transform(clustering_model.cluster_centers_)
plt.scatter(x=transformed[:, 0], y=transformed[:, 1], c=y_km, s=50, cmap=plt.cm.Paired, alpha=0.4)
plt.scatter(centers[:, 0],centers[:, 1],
s=250, marker='*', label='centroids',
edgecolor='black',
c=np.arange(0,num_clusters),cmap=plt.cm.Paired,)
plt.xticks([])
plt.yticks([])
plt.savefig(save_file+".png", dpi=600)
if __name__ == "__main__":
main() |