File size: 9,425 Bytes
49079cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
'''
Modified from https://github.com/RuochenZhao/Verify-and-Edit
'''
import wikipedia
import wikipediaapi
import spacy
import numpy as np
import ngram
#import nltk
import torch
import sklearn
#from textblob import TextBlob
from nltk import tokenize
from sentence_transformers import SentenceTransformer
from transformers import DPRQuestionEncoder, DPRQuestionEncoderTokenizer, DPRContextEncoder, DPRContextEncoderTokenizer
from llm_utils import decoder_for_gpt3
from utils import entity_cleansing, knowledge_cleansing
wiki_wiki = wikipediaapi.Wikipedia('en')
nlp = spacy.load("en_core_web_sm")
ENT_TYPE = ['EVENT', 'FAC', 'GPE', 'LANGUAGE', 'LAW', 'LOC', 'NORP', 'ORG', 'PERSON', 'PRODUCT', 'WORK_OF_ART']
CTX_ENCODER = DPRContextEncoder.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base")
CTX_TOKENIZER = DPRContextEncoderTokenizer.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base", model_max_length = 512)
Q_ENCODER = DPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base")
Q_TOKENIZER = DPRQuestionEncoderTokenizer.from_pretrained("facebook/dpr-question_encoder-single-nq-base", model_max_length = 512)
## todo: extract entities from ConceptNet
def find_ents(text, engine):
doc = nlp(text)
valid_ents = []
for ent in doc.ents:
if ent.label_ in ENT_TYPE:
valid_ents.append(ent.text)
#in case entity list is empty: resort to LLM to extract entity
if valid_ents == []:
input = "Question: " + "[ " + text + "]\n"
input += "Output the entities in Question separated by comma: "
response = decoder_for_gpt3(input, 32, engine=engine)
valid_ents = entity_cleansing(response)
return valid_ents
def relevant_pages_for_ents(valid_ents, topk = 5):
'''
Input: a list of valid entities
Output: a list of list containing topk pages for each entity
'''
if valid_ents == []:
return []
titles = []
for ve in valid_ents:
title = wikipedia.search(ve)[:topk]
titles.append(title)
#titles = list(dict.fromkeys(titles))
return titles
def relevant_pages_for_text(text, topk = 5):
return wikipedia.search(text)[:topk]
def get_wiki_objs(pages):
'''
Input: a list of list
Output: a list of list
'''
if pages == []:
return []
obj_pages = []
for titles_for_ve in pages:
pages_for_ve = [wiki_wiki.page(title) for title in titles_for_ve]
obj_pages.append(pages_for_ve)
return obj_pages
def get_linked_pages(wiki_pages, topk = 5):
linked_ents = []
for wp in wiki_pages:
linked_ents += list(wp.links.values())
if topk != -1:
linked_ents = linked_ents[:topk]
return linked_ents
def get_texts_to_pages(pages, topk = 2):
'''
Input: list of list of pages
Output: list of list of texts
'''
total_texts = []
for ve_pages in pages:
ve_texts = []
for p in ve_pages:
text = p.text
text = tokenize.sent_tokenize(text)[:topk]
text = ' '.join(text)
ve_texts.append(text)
total_texts.append(ve_texts)
return total_texts
def DPR_embeddings(q_encoder, q_tokenizer, question):
question_embedding = q_tokenizer(question, return_tensors="pt",max_length=5, truncation=True)
with torch.no_grad():
try:
question_embedding = q_encoder(**question_embedding)[0][0]
except:
print(question)
print(question_embedding['input_ids'].size())
raise Exception('end')
question_embedding = question_embedding.numpy()
return question_embedding
def model_embeddings(sentence, model):
embedding = model.encode([sentence])
return embedding[0] #should return an array of shape 384
##todo: plus overlap filtering
def filtering_retrieved_texts(question, ent_texts, retr_method="wikipedia_dpr", topk=1):
filtered_texts = []
for texts in ent_texts:
if texts != []: #not empty list
if retr_method == "ngram":
pars = np.array([ngram.NGram.compare(question, sent, N=1) for sent in texts])
#argsort: smallest to biggest
pars = pars.argsort()[::-1][:topk]
else:
if retr_method == "wikipedia_dpr":
sen_embeds = [DPR_embeddings(Q_ENCODER, Q_TOKENIZER, question)]
par_embeds = [DPR_embeddings(CTX_ENCODER, CTX_TOKENIZER, s) for s in texts]
else:
embedding_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
sen_embeds = [model_embeddings(question, embedding_model)]
par_embeds = [model_embeddings(s, embedding_model) for s in texts]
pars = sklearn.metrics.pairwise.pairwise_distances(sen_embeds, par_embeds)
pars = pars.argsort(axis=1)[0][:topk]
filtered_texts += [texts[i] for i in pars]
filtered_texts = list(dict.fromkeys(filtered_texts))
return filtered_texts
def join_knowledge(filtered_texts):
if filtered_texts == []:
return ""
return " ".join(filtered_texts)
def retrieve_for_question_kb(question, engine, know_type="entity_know", no_links=False):
valid_ents = find_ents(question, engine)
print(valid_ents)
# find pages
page_titles = []
if "entity" in know_type:
pages_for_ents = relevant_pages_for_ents(valid_ents, topk = 5) #list of list
if pages_for_ents != []:
page_titles += pages_for_ents
if "question" in know_type:
pages_for_question = relevant_pages_for_text(question, topk = 5)
if pages_for_question != []:
page_titles += pages_for_question
pages = get_wiki_objs(page_titles) #list of list
if pages == []:
return ""
new_pages = []
assert page_titles != []
assert pages != []
print(page_titles)
#print(pages)
for i, ve_pt in enumerate(page_titles):
new_ve_pages = []
for j, pt in enumerate(ve_pt):
if 'disambiguation' in pt:
new_ve_pages += get_linked_pages([pages[i][j]], topk=-1)
else:
new_ve_pages += [pages[i][j]]
new_pages.append(new_ve_pages)
pages = new_pages
if not no_links:
# add linked pages
for ve_pages in pages:
ve_pages += get_linked_pages(ve_pages, topk=5)
ve_pages = list(dict.fromkeys(ve_pages))
#get texts
texts = get_texts_to_pages(pages, topk=1)
filtered_texts = filtering_retrieved_texts(question, texts)
joint_knowledge = join_knowledge(filtered_texts)
return valid_ents, joint_knowledge
def retrieve_for_question(question, engine, retrieve_source="llm_kb"):
# Retrieve knowledge from LLM
if "llm" in retrieve_source:
self_retrieve_prompt = "Question: " + "[ " + question + "]\n"
self_retrieve_prompt += "Necessary knowledge about the question by not answering the question: "
self_retrieve_knowledge = decoder_for_gpt3(self_retrieve_prompt, 256, engine=engine)
self_retrieve_knowledge = knowledge_cleansing(self_retrieve_knowledge)
print("------Self_Know------")
print(self_retrieve_knowledge)
# Retrieve knowledge from KB
if "kb" in retrieve_source:
entities, kb_retrieve_knowledge = retrieve_for_question_kb(question, engine, no_links=True)
if kb_retrieve_knowledge != "":
print("------KB_Know------")
print(kb_retrieve_knowledge)
return entities, self_retrieve_knowledge, kb_retrieve_knowledge
def refine_for_question(question, engine, self_retrieve_knowledge, kb_retrieve_knowledge, retrieve_source="llm_kb"):
# Refine knowledge
if retrieve_source == "llm_only":
refine_knowledge = self_retrieve_knowledge
elif retrieve_source == "kb_only":
if kb_retrieve_knowledge != "":
refine_prompt = "Question: " + "[ " + question + "]\n"
refine_prompt += "Knowledge: " + "[ " + kb_retrieve_knowledge + "]\n"
refine_prompt += "Based on Knowledge, output the brief and refined knowledge necessary for Question by not giving the answer: "
refine_knowledge = decoder_for_gpt3(refine_prompt, 256, engine=engine)
print("------Refined_Know------")
print(refine_knowledge)
else:
refine_knowledge = ""
elif retrieve_source == "llm_kb":
if kb_retrieve_knowledge != "":
#refine_prompt = "Question: " + "[ " + question + "]\n"
refine_prompt = "Knowledge_1: " + "[ " + self_retrieve_knowledge + "]\n"
refine_prompt += "Knowledge_2: " + "[ " + kb_retrieve_knowledge + "]\n"
#refine_prompt += "By using Knowledge_2 to check Knowledge_1, output the brief and correct knowledge necessary for Question: "
refine_prompt += "By using Knowledge_2 to check Knowledge_1, output the brief and correct knowledge: "
refine_knowledge = decoder_for_gpt3(refine_prompt, 256, engine=engine)
refine_knowledge = knowledge_cleansing(refine_knowledge)
#refine_knowledge = kb_retrieve_knowledge + refine_knowledge
print("------Refined_Know------")
print(refine_knowledge)
else:
refine_knowledge = self_retrieve_knowledge
return refine_knowledge
|