File size: 9,425 Bytes
49079cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
'''
Modified from https://github.com/RuochenZhao/Verify-and-Edit
'''

import wikipedia
import wikipediaapi
import spacy
import numpy as np
import ngram
#import nltk
import torch
import sklearn
#from textblob import TextBlob
from nltk import tokenize
from sentence_transformers import SentenceTransformer
from transformers import DPRQuestionEncoder, DPRQuestionEncoderTokenizer, DPRContextEncoder, DPRContextEncoderTokenizer
from llm_utils import decoder_for_gpt3
from utils import entity_cleansing, knowledge_cleansing

wiki_wiki = wikipediaapi.Wikipedia('en')
nlp = spacy.load("en_core_web_sm")
ENT_TYPE = ['EVENT', 'FAC', 'GPE', 'LANGUAGE', 'LAW', 'LOC', 'NORP', 'ORG', 'PERSON', 'PRODUCT', 'WORK_OF_ART']

CTX_ENCODER = DPRContextEncoder.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base")
CTX_TOKENIZER = DPRContextEncoderTokenizer.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base", model_max_length = 512)
Q_ENCODER = DPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base")
Q_TOKENIZER = DPRQuestionEncoderTokenizer.from_pretrained("facebook/dpr-question_encoder-single-nq-base", model_max_length = 512)


## todo: extract entities from ConceptNet
def find_ents(text, engine):
    doc = nlp(text)
    valid_ents = []
    for ent in doc.ents:
        if ent.label_ in ENT_TYPE:
            valid_ents.append(ent.text)
    #in case entity list is empty: resort to LLM to extract entity
    if valid_ents == []:
        input = "Question: " + "[ " + text + "]\n"
        input += "Output the entities in Question separated by comma: "
        response = decoder_for_gpt3(input, 32, engine=engine)
        valid_ents = entity_cleansing(response)
    return valid_ents


def relevant_pages_for_ents(valid_ents, topk = 5):
    '''
    Input: a list of valid entities
    Output: a list of list containing topk pages for each entity
    '''
    if valid_ents == []:
        return []
    titles = []
    for ve in valid_ents:
        title = wikipedia.search(ve)[:topk]
        titles.append(title)
    #titles = list(dict.fromkeys(titles))
    return titles


def relevant_pages_for_text(text, topk = 5):
    return wikipedia.search(text)[:topk]


def get_wiki_objs(pages):
    '''
    Input: a list of list
    Output: a list of list
    '''
    if pages == []:
        return []
    obj_pages = []
    for titles_for_ve in pages:
        pages_for_ve = [wiki_wiki.page(title) for title in titles_for_ve]
        obj_pages.append(pages_for_ve)
    return obj_pages


def get_linked_pages(wiki_pages, topk = 5):
    linked_ents = []
    for wp in wiki_pages:
        linked_ents += list(wp.links.values())
        if topk != -1:
            linked_ents = linked_ents[:topk]
    return linked_ents


def get_texts_to_pages(pages, topk = 2):
    '''
    Input: list of list of pages
    Output: list of list of texts
    '''
    total_texts = []
    for ve_pages in pages:
        ve_texts = []
        for p in ve_pages:
            text = p.text
            text = tokenize.sent_tokenize(text)[:topk]
            text = ' '.join(text)
            ve_texts.append(text)
        total_texts.append(ve_texts)
    return total_texts



def DPR_embeddings(q_encoder, q_tokenizer, question):
    question_embedding = q_tokenizer(question, return_tensors="pt",max_length=5, truncation=True)
    with torch.no_grad():
        try:
            question_embedding = q_encoder(**question_embedding)[0][0]
        except:
            print(question)
            print(question_embedding['input_ids'].size())
            raise Exception('end')
    question_embedding = question_embedding.numpy()
    return question_embedding

def model_embeddings(sentence, model):
    embedding = model.encode([sentence])
    return embedding[0] #should return an array of shape 384

##todo: plus overlap filtering
def filtering_retrieved_texts(question, ent_texts, retr_method="wikipedia_dpr", topk=1):
    filtered_texts = []
    for texts in ent_texts:
        if texts != []: #not empty list
            if retr_method == "ngram":
                pars = np.array([ngram.NGram.compare(question, sent, N=1) for sent in texts])
                #argsort: smallest to biggest
                pars = pars.argsort()[::-1][:topk]
            else:
                if retr_method == "wikipedia_dpr":
                    sen_embeds = [DPR_embeddings(Q_ENCODER, Q_TOKENIZER, question)]
                    par_embeds = [DPR_embeddings(CTX_ENCODER, CTX_TOKENIZER, s) for s in texts]
                else:
                    embedding_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
                    sen_embeds = [model_embeddings(question, embedding_model)]
                    par_embeds = [model_embeddings(s, embedding_model) for s in texts]
                pars = sklearn.metrics.pairwise.pairwise_distances(sen_embeds, par_embeds)
                pars = pars.argsort(axis=1)[0][:topk]
        filtered_texts += [texts[i] for i in pars]
    filtered_texts = list(dict.fromkeys(filtered_texts))
    return filtered_texts

def join_knowledge(filtered_texts):
    if filtered_texts == []:
        return ""
    return " ".join(filtered_texts)

def retrieve_for_question_kb(question, engine, know_type="entity_know", no_links=False):
    valid_ents = find_ents(question, engine)
    print(valid_ents)

    # find pages
    page_titles = []
    if "entity" in know_type:
        pages_for_ents = relevant_pages_for_ents(valid_ents, topk = 5)  #list of list
        if pages_for_ents != []:
            page_titles += pages_for_ents
    if "question" in know_type:
        pages_for_question = relevant_pages_for_text(question, topk = 5)
        if pages_for_question != []:
            page_titles += pages_for_question
    pages = get_wiki_objs(page_titles)  #list of list
    if pages == []:
        return ""
    new_pages = []
    assert page_titles != []
    assert pages != []

    print(page_titles)
    #print(pages)
    for i, ve_pt in enumerate(page_titles):
        new_ve_pages = []
        for j, pt in enumerate(ve_pt):
            if 'disambiguation' in pt:
                new_ve_pages += get_linked_pages([pages[i][j]], topk=-1)
            else:
                new_ve_pages += [pages[i][j]]
        new_pages.append(new_ve_pages)
    
    pages = new_pages
    
    if not no_links:
        # add linked pages
        for ve_pages in pages:
            ve_pages += get_linked_pages(ve_pages, topk=5)
            ve_pages = list(dict.fromkeys(ve_pages))
    #get texts
    texts = get_texts_to_pages(pages, topk=1)
    filtered_texts = filtering_retrieved_texts(question, texts)
    joint_knowledge = join_knowledge(filtered_texts)


    return valid_ents, joint_knowledge

def retrieve_for_question(question, engine, retrieve_source="llm_kb"):
    # Retrieve knowledge from LLM
    if "llm" in retrieve_source:
        self_retrieve_prompt = "Question: " + "[ " + question + "]\n"
        self_retrieve_prompt += "Necessary knowledge about the question by not answering the question: "
        self_retrieve_knowledge = decoder_for_gpt3(self_retrieve_prompt, 256, engine=engine)
        self_retrieve_knowledge = knowledge_cleansing(self_retrieve_knowledge)
        print("------Self_Know------")
        print(self_retrieve_knowledge)
    
    # Retrieve knowledge from KB
    if "kb" in retrieve_source:
        entities, kb_retrieve_knowledge = retrieve_for_question_kb(question, engine, no_links=True)
        if kb_retrieve_knowledge != "":
            print("------KB_Know------")
            print(kb_retrieve_knowledge)
    
    return entities, self_retrieve_knowledge, kb_retrieve_knowledge

def refine_for_question(question, engine, self_retrieve_knowledge, kb_retrieve_knowledge, retrieve_source="llm_kb"):

    # Refine knowledge
    if retrieve_source == "llm_only":
        refine_knowledge = self_retrieve_knowledge
    elif retrieve_source == "kb_only":
        if kb_retrieve_knowledge != "":
            refine_prompt = "Question: " + "[ " + question + "]\n"
            refine_prompt += "Knowledge: " + "[ " + kb_retrieve_knowledge + "]\n"
            refine_prompt += "Based on Knowledge, output the brief and refined knowledge necessary for Question by not giving the answer: "
            refine_knowledge = decoder_for_gpt3(refine_prompt, 256, engine=engine)
            print("------Refined_Know------")
            print(refine_knowledge)
        else:
            refine_knowledge = ""
    elif retrieve_source == "llm_kb":
        if kb_retrieve_knowledge != "":
            #refine_prompt = "Question: " + "[ " + question + "]\n"
            refine_prompt = "Knowledge_1: " + "[ " + self_retrieve_knowledge + "]\n"
            refine_prompt += "Knowledge_2: " + "[ " + kb_retrieve_knowledge + "]\n"
            #refine_prompt += "By using Knowledge_2 to check Knowledge_1, output the brief and correct knowledge necessary for Question: "
            refine_prompt += "By using Knowledge_2 to check Knowledge_1, output the brief and correct knowledge: "
            refine_knowledge = decoder_for_gpt3(refine_prompt, 256, engine=engine)
            refine_knowledge = knowledge_cleansing(refine_knowledge)
            #refine_knowledge = kb_retrieve_knowledge + refine_knowledge
            print("------Refined_Know------")
            print(refine_knowledge)
        else:
            refine_knowledge = self_retrieve_knowledge
    
    return refine_knowledge