File size: 24,869 Bytes
d0ba0ce
944017e
118380a
02cc2be
d0ba0ce
7c95914
d0ba0ce
7c95914
 
 
 
 
 
 
 
d0ba0ce
19210a1
 
7c95914
71ceb20
 
 
f6bf684
3e6af9f
 
 
 
1c86f62
 
8e350f6
206f2ac
 
 
df93392
 
 
 
45a9294
 
44c0e78
 
 
 
 
668775b
44c0e78
 
 
92932f6
 
 
 
 
 
 
 
 
 
 
44c0e78
af8c165
266d4b2
13e1f31
d0ba0ce
13e1f31
45a9294
3e6af9f
 
a98948f
72a2744
45a9294
7f3e938
 
c88d52e
7f3e938
 
e9402a1
 
 
 
 
b5cf26b
e9402a1
 
7f3e938
e9402a1
 
 
 
 
 
 
 
b5cf26b
7f3e938
 
 
 
 
 
96208c1
b5cf26b
 
96208c1
 
 
 
 
7f3e938
 
 
 
 
e9402a1
 
4c887e6
7c95914
72a2744
 
 
 
 
 
 
2b04423
d0ba0ce
d06a457
238d307
3e6af9f
1e4efde
3e6af9f
 
 
 
 
9deba2d
0272cf0
9deba2d
6c0a950
 
 
 
118380a
 
 
 
6c0a950
 
 
 
 
 
 
 
 
 
 
 
 
e9402a1
 
 
 
 
 
 
 
 
 
 
9deba2d
 
118380a
 
 
 
 
 
 
 
 
 
 
 
0272cf0
3e6af9f
57b73ce
 
3031f8e
57b73ce
3031f8e
960b433
19210a1
eaccf69
df93392
51c6da7
 
 
eaccf69
df93392
1b4370e
eaccf69
df93392
64e0554
df93392
1b4370e
eaccf69
 
 
19210a1
64e0554
eaccf69
19210a1
7244e04
19210a1
7755b19
51c6da7
cf911b9
ed3f96e
 
eaccf69
ed3f96e
 
1b4370e
7755b19
ed3f96e
51c6da7
 
19210a1
1b4370e
 
7755b19
3e6af9f
72a2744
 
 
 
 
 
 
 
dcd9708
45a9294
 
8e350f6
 
13e1f31
0d3004a
8e350f6
45a9294
8e350f6
 
 
45a9294
a73099f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e6af9f
72a2744
a73099f
 
 
45a9294
a73099f
 
45a9294
a73099f
 
 
 
 
 
 
8e350f6
a73099f
 
 
45a9294
a73099f
 
13e1f31
a73099f
 
3031f8e
a73099f
 
 
 
 
 
 
 
 
eaccf69
 
4b09695
 
eaccf69
a73099f
 
 
9ccf87a
 
a73099f
 
 
 
 
 
d0ba0ce
72a2744
 
713303c
 
d0ba0ce
3e6af9f
 
1c86f62
 
 
 
 
 
 
 
 
 
 
 
 
13e1f31
1c86f62
 
 
 
 
 
 
9ccf87a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c86f62
 
 
9ccf87a
 
 
 
 
 
1c86f62
9ccf87a
 
 
 
 
 
 
 
 
1c86f62
9ccf87a
 
1c86f62
9ccf87a
 
1c86f62
9ccf87a
eaccf69
4b09695
eaccf69
1c86f62
9ccf87a
 
 
 
 
1c86f62
9ccf87a
 
 
 
 
 
1c86f62
 
 
 
 
45a9294
 
206f2ac
 
 
 
 
 
 
 
 
 
 
 
 
 
13e1f31
206f2ac
 
 
 
 
 
 
9ccf87a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
206f2ac
 
 
9ccf87a
 
 
 
 
 
206f2ac
9ccf87a
 
 
 
 
 
 
 
 
206f2ac
9ccf87a
 
206f2ac
9ccf87a
 
206f2ac
9ccf87a
d8e124d
206f2ac
9ccf87a
 
 
 
 
eaccf69
 
 
206f2ac
9ccf87a
 
 
 
 
206f2ac
 
 
 
 
45a9294
3e6af9f
 
 
 
 
 
 
b5cf26b
3e6af9f
 
 
 
b5cf26b
3e6af9f
d5fc916
b5cf26b
 
206f2ac
abd1f1b
72a2744
0da8351
4b3134c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
import streamlit as st
from PIL import Image
import random
import time
from dotenv import load_dotenv
import pickle
from huggingface_hub import Repository
from PyPDF2 import PdfReader
from streamlit_extras.add_vertical_space import add_vertical_space
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.llms import OpenAI
from langchain.chains.question_answering import load_qa_chain
from langchain.callbacks import get_openai_callback
import os
import uuid
import json

import pandas as pd
import pydeck as pdk
from urllib.error import URLError

# Initialize session state variables
if 'chat_history_page1' not in st.session_state:
    st.session_state['chat_history_page1'] = []

if 'chat_history_page2' not in st.session_state:
    st.session_state['chat_history_page2'] = []

if 'chat_history_page3' not in st.session_state:
    st.session_state['chat_history_page3'] = []

# This session ID will be unique per user session and consistent across all pages.
if 'session_id' not in st.session_state:
    st.session_state['session_id'] = str(uuid.uuid4())



# Step 1: Clone the Dataset Repository
repo = Repository(
    local_dir="Private_Book",  # Local directory to clone the repository
    repo_type="dataset",  # Specify that this is a dataset repository
    clone_from="Anne31415/Private_Book",  # Replace with your repository URL
    token=os.environ["HUB_TOKEN"]  # Use the secret token to authenticate
)
repo.git_pull()  # Pull the latest changes (if any)


# Step 1: Clone the ChatSet Repository - save all the chats anonymously
repo2 = Repository(
    local_dir="Chat_Store",  # Local directory to clone the repository
    repo_type="dataset",  # Specify that this is a dataset repository
    clone_from="Anne31415/Chat_Store",  # Replace with your repository URL
    token=os.environ["HUB_TOKEN"]  # Use the secret token to authenticate
)
repo.git_pull()  # Pull the latest changes (if any)


# Step 2: Load the PDF File
pdf_path = "Private_Book/KH_Reform230124.pdf"  # Replace with your PDF file path

pdf_path2 = "Private_Book/Buch_23012024.pdf"  

pdf_path3 = "Private_Book/Kosten_Grunddaten_KH_230124.pdf"  

api_key = os.getenv("OPENAI_API_KEY")
# Retrieve the API key from st.secrets



# Updated load_vector_store function with Streamlit text outputs and directory handling for Git
@st.cache_data(persist="disk")
def load_vector_store(file_path, store_name, force_reload=False):
    local_repo_path = "Private_Book"
    vector_store_path = os.path.join(local_repo_path, f"{store_name}.pkl")

    # Check if vector store already exists and force_reload is False
    if not force_reload and os.path.exists(vector_store_path):
        with open(vector_store_path, "rb") as f:
            VectorStore = pickle.load(f)
        #st.text(f"Loaded existing vector store from {vector_store_path}")
    else:
        # Load and process the PDF, then create the vector store
        text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200, length_function=len)
        text = load_pdf_text(file_path)
        chunks = text_splitter.split_text(text=text)
        embeddings = OpenAIEmbeddings()
        VectorStore = FAISS.from_texts(chunks, embedding=embeddings)

        # Serialize the vector store
        with open(vector_store_path, "wb") as f:
            pickle.dump(VectorStore, f)
        #st.text(f"Created and saved vector store at {vector_store_path}")

        # Change working directory for Git operations
        original_dir = os.getcwd()
        os.chdir(local_repo_path)
        
        try:
            # Check current working directory and list files for debugging
            #st.text(f"Current working directory: {os.getcwd()}")
            #st.text(f"Files in current directory: {os.listdir()}")
        
            # Adjusted file path for Git command
            repo.git_add(f"{store_name}.pkl")  # Use just the file name
            repo.git_commit(f"Update vector store: {store_name}")
            repo.git_push()
        except Exception as e:
            st.error(f"Error during Git operations: {e}")
        finally:
            # Change back to the original directory
            os.chdir(original_dir)

    return VectorStore


# Utility function to load text from a PDF
def load_pdf_text(file_path):
    pdf_reader = PdfReader(file_path)
    text = ""
    for page in pdf_reader.pages:
        text += page.extract_text() or ""  # Add fallback for pages where text extraction fails
    return text

def load_chatbot():
    #return load_qa_chain(llm=OpenAI(), chain_type="stuff")
    return load_qa_chain(llm=OpenAI(model_name="gpt-3.5-turbo-instruct"), chain_type="stuff")


def display_chat_history(chat_history):
    for chat in chat_history:
        background_color = "#ffeecf" if chat[2] == "new" else "#ffeecf" if chat[0] == "User" else "#ffeecf"
        st.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)


def handle_no_answer(response):
    no_answer_phrases = [
        "ich weiß es nicht",
        "ich weiß nicht",
        "ich bin mir nicht sicher",
        "es wird nicht erwähnt",
        "Leider kann ich diese Frage nicht beantworten",
        "kann ich diese Frage nicht beantworten",
        "ich kann diese Frage nicht beantworten",
        "ich kann diese Frage leider nicht beantworten",
        "keine information",
        "das ist unklar",
        "da habe ich keine antwort",
        "das kann ich nicht beantworten",
        "i don't know",
        "i am not sure",
        "it is not mentioned",
        "no information",
        "that is unclear",
        "i have no answer",
        "i cannot answer that",
        "unable to provide an answer",
        "not enough context",
        "Sorry, I do not have enough information",
        "I do not have enough information",
        "I don't have enough information",
        "Sorry, I don't have enough context to answer that question.",
        "I don't have enough context to answer that question.",
        "to answer that question.",
        "Sorry",
        "I'm sorry",
        "I don't understand the question",
        "I don't understand"

    ]

    alternative_responses = [
        "Hmm, das ist eine knifflige Frage. Lass uns das gemeinsam erkunden. Kannst du mehr Details geben?",
        "Interessante Frage! Ich bin mir nicht sicher, aber wir können es herausfinden. Hast du weitere Informationen?",
        "Das ist eine gute Frage. Ich habe momentan keine Antwort darauf, aber vielleicht kannst du sie anders formulieren?",
        "Da bin ich überfragt. Kannst du die Frage anders stellen oder mir mehr Kontext geben?",
        "Ich stehe hier etwas auf dem Schlauch. Gibt es noch andere Aspekte der Frage, die wir betrachten könnten?",
        # Add more alternative responses as needed
    ]

    # Check if response matches any phrase in no_answer_phrases
    if any(phrase in response.lower() for phrase in no_answer_phrases):
        return random.choice(alternative_responses)  # Randomly select a response
    return response

def ask_bot(query):
    # Definiere den standardmäßigen Prompt
    standard_prompt = "Schreibe immer höflich und auf antworte immer in der Sprache in der der User auch schreibt. Formuliere immer ganze freundliche ganze Sätze und biete wenn möglich auch mehr Informationen (aber nicht mehr als 1 Satz mehr). Wenn der User sehr vage schreibt frage nach. Wenn du zu einer bestimmten Frage Daten aus mehreren Jahren hast, frage den User für welche Jahre er sich interessiert und nenne ihm natürlich Möglichkeiten über die Jahre die du hast. "
    # Kombiniere den standardmäßigen Prompt mit der Benutzeranfrage
    full_query = standard_prompt + query
    return full_query

def save_conversation(chat_histories, session_id):
    base_path = "Chat_Store/conversation_logs"
    if not os.path.exists(base_path):
        os.makedirs(base_path)

    filename = f"{base_path}/{session_id}.json"

    # Check if the log file already exists
    existing_data = {"page1": [], "page2": [], "page3": []}
    if os.path.exists(filename):
        with open(filename, 'r', encoding='utf-8') as file:
            existing_data = json.load(file)

    # Append the new chat history to the existing data for each page
    for page_number, chat_history in enumerate(chat_histories, start=1):
        existing_data[f"page{page_number}"] += chat_history

    with open(filename, 'w', encoding='utf-8') as file:
        json.dump(existing_data, file, indent=4, ensure_ascii=False)

    # Git operations
    try:
        # Change directory to Chat_Store for Git operations
        original_dir = os.getcwd()
        os.chdir('Chat_Store')
    
        # Correct file path relative to the Git repository's root
        git_file_path = f"conversation_logs/{session_id}.json"
    
        repo2.git_add(git_file_path)
        repo2.git_commit(f"Add/update conversation log for session {session_id}")
        repo2.git_push()
    
        # Change back to the original directory
        os.chdir(original_dir)
    except Exception as e:
        st.error(f"Error during Git operations: {e}")


def page1():
    try:
        hide_streamlit_style = """
                <style>
                #MainMenu {visibility: hidden;}
                footer {visibility: hidden;}
                </style>
                """
        st.markdown(hide_streamlit_style, unsafe_allow_html=True)
    
         # Create columns for layout
        col1, col2 = st.columns([3, 1])  # Adjust the ratio to your liking

        with col1:
            st.title("KH_reform!")

        with col2:
            # Load and display the image in the right column, which will be the top-right corner of the page
            image = Image.open('BinDoc Logo (Quadratisch).png')
            st.image(image, use_column_width='always')

 
        if not os.path.exists(pdf_path):
            st.error("File not found. Please check the file path.")
            return

        VectorStore = load_vector_store(pdf_path, "KH_Reform_2301", force_reload=False)

        display_chat_history(st.session_state['chat_history_page1'])

        st.write("<!-- Start Spacer -->", unsafe_allow_html=True)
        st.write("<div style='flex: 1;'></div>", unsafe_allow_html=True)
        st.write("<!-- End Spacer -->", unsafe_allow_html=True)

        new_messages_placeholder = st.empty()

        query = st.text_input("Geben Sie hier Ihre Frage ein / Enter your question here:")

        add_vertical_space(2)  # Adjust as per the desired spacing
        
        # Create two columns for the buttons
        col1, col2 = st.columns(2)
        
        with col1:
            if st.button("Wie viele Ärzte benötigt eine Klinik in der Leistungsgruppe Stammzell-transplantation?"):
                query = "Wie viele Ärzte benötigt eine Klinik in der Leistungsgruppe Stammzell-transplantation?"
            if st.button("Wie viele Leistungsgruppen gibt es?"):
                query = ("Wie viele Leistungsgruppen gibt es?")
            if st.button("Was sind die hauptsächlichen Änderungsvorhaben der Krankenhausreform?"):
                query = "Was sind die hauptsächlichen Änderungsvorhaben der Krankenhausreform?"

        
        with col2:
            if st.button("Welche und wieviele Fachärzte benötige ich für die Leistungsgruppe Pädiatrie? "):
                query = "Welche und wieviele Fachärzte benötige ich für die Leistungsgruppe Pädiatrie"
            if st.button("Was soll die Reform der Notfallversorgung beinhalten?"):
                query = "Was soll die Reform der Notfallversorgung beinhalten?"
            if st.button("Was bedeutet die Vorhaltefinanzierung?"):
                query = "Was bedeutet die Vorhaltefinanzierung?"


    
        if query:
            full_query = ask_bot(query)
            st.session_state['chat_history_page1'].append(("User", query, "new"))

            # Start timing
            start_time = time.time()
            
            with st.spinner('Bot is thinking...'):
                chain = load_chatbot()
                docs = VectorStore.similarity_search(query=query, k=5)
                with get_openai_callback() as cb:
                    response = chain.run(input_documents=docs, question=full_query)
                    response = handle_no_answer(response)  # Process the response through the new function


                    
            # Stop timing
            end_time = time.time()
            
            # Calculate duration
            duration = end_time - start_time

            # You can use Streamlit's text function to display the timing
            st.text(f"Response time: {duration:.2f} seconds")

            st.session_state['chat_history_page1'].append(("Bot", response, "new"))


            # Display new messages at the bottom
            new_messages = st.session_state['chat_history_page1'][-2:]
            for chat in new_messages:
                background_color = "#ffeecf" if chat[2] == "new" else "#ffeecf" if chat[0] == "User" else "#ffeecf"
                new_messages_placeholder.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)


        
            # Save the chat historie in sepearte files
            save_conversation(st.session_state['chat_history_page1'], st.session_state['session_id'], 1)


            
            # Display the current working directory after save_conversation
            #current_dir = os.getcwd()
            #st.text(f"Current working directory after save_conversation: {current_dir}")
            
            # Clear the input field after the query is made
            query = ""

        # Mark all messages as old after displaying
        st.session_state['chat_history_page1'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history_page1']]

    except Exception as e:
        st.error(f"Upsi, an unexpected error occurred: {e}")
        # Optionally log the exception details to a file or error tracking service



def page2():
    try:
        hide_streamlit_style = """
                <style>
                #MainMenu {visibility: hidden;}
                footer {visibility: hidden;}
                </style>
                """
        st.markdown(hide_streamlit_style, unsafe_allow_html=True)
    
         # Create columns for layout
        col1, col2 = st.columns([3, 1])  # Adjust the ratio to your liking

        with col1:
            st.title("Kennzahlenbuch 100 Kennzahlen!")

        with col2:
            # Load and display the image in the right column, which will be the top-right corner of the page
            image = Image.open('BinDoc Logo (Quadratisch).png')
            st.image(image, use_column_width='always')

            
        if not os.path.exists(pdf_path2):
            st.error("File not found. Please check the file path.")
            return

        VectorStore = load_vector_store(pdf_path2, "Buch_2301", force_reload=False)



        display_chat_history(st.session_state['chat_history_page2'])

        st.write("<!-- Start Spacer -->", unsafe_allow_html=True)
        st.write("<div style='flex: 1;'></div>", unsafe_allow_html=True)
        st.write("<!-- End Spacer -->", unsafe_allow_html=True)

        new_messages_placeholder = st.empty()

        query = st.text_input("Ask questions about your PDF file (in any preferred language):")

        add_vertical_space(2)  # Adjust as per the desired spacing
        
        # Create two columns for the buttons
        col1, col2 = st.columns(2)
        
        with col1:
            if st.button("Nenne mir 5 wichtige Personalkennzahlen im Krankenhaus."):
                query = "Nenne mir 5 wichtige Personalkennzahlen im Krankenhaus."
            if st.button("Wie ist die durchschnittliche Bettenauslastung eines Krankenhauses?"):
                query = ("Wie ist die durchschnittliche Bettenauslastung eines Krankenhauses?")
            if st.button("Welches sind die häufigsten DRGs, die von den Krankenhäusern abgerechnet werden?"):
                query = "Welches sind die häufigsten DRGs, die von den Krankenhäusern abgerechnet werden? "

        
        with col2:
            if st.button("Wie viel Casemixpunkte werden im Median von einer ärztlichen Vollkraft erbracht?"):
                query = "Wie viel Casemixpunkte werden im Median von einer ärztlichen Vollkraft erbracht?"
            if st.button("Bitte erstelle mir einer Übersicht der wichtiger Strukturkennzahlen eines Krankenhauses der Grund- und Regelversorgung."):
                query = "Bitte erstelle mir einer Übersicht der wichtiger Strukturkennzahlen eines Krankenhauses der Grund- und Regelversorgung."
            if st.button("Wie viele Patienten eines Grund- und Regelversorgers kommen aus welcher Fahrzeitzone?"):
                query = "Wie viele Patienten eines Grund- und Regelversorgers kommen aus welcher Fahrzeitzone?"

    

        if query:
            full_query = ask_bot(query)
            st.session_state['chat_history_page2'].append(("User", query, "new"))

            # Start timing
            start_time = time.time()
            
            with st.spinner('Bot is thinking...'):
                chain = load_chatbot()
                docs = VectorStore.similarity_search(query=query, k=5)
                with get_openai_callback() as cb:
                    response = chain.run(input_documents=docs, question=full_query)
                    response = handle_no_answer(response)  # Process the response through the new function
                    
            # Stop timing
            end_time = time.time()
            
            # Calculate duration
            duration = end_time - start_time

            # You can use Streamlit's text function to display the timing
            st.text(f"Response time: {duration:.2f} seconds")

            st.session_state['chat_history_page2'].append(("Bot", response, "new"))
            
            # Save the chat historie in sepearte files
            save_conversation(st.session_state['chat_history_page2'], st.session_state['session_id'], 2)

            # Display new messages at the bottom
            new_messages = st.session_state['chat_history_page2'][-2:]
            for chat in new_messages:
                background_color = "#ffeecf" if chat[2] == "new" else "#ffeecf" if chat[0] == "User" else "#ffeecf"
                new_messages_placeholder.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)


            # Clear the input field after the query is made
            query = ""

        # Mark all messages as old after displaying
        st.session_state['chat_history_page2'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history_page2']]

    except Exception as e:
        st.error(f"Upsi, an unexpected error occurred: {e}")
        # Optionally log the exception details to a file or error tracking service



def page3():
    try:
        hide_streamlit_style = """
                <style>
                #MainMenu {visibility: hidden;}
                footer {visibility: hidden;}
                </style>
                """
        st.markdown(hide_streamlit_style, unsafe_allow_html=True)
    
         # Create columns for layout
        col1, col2 = st.columns([3, 1])  # Adjust the ratio to your liking

        with col1:
            st.title("Kosten- und Strukturdaten der Krankenhäuser")

        with col2:
            # Load and display the image in the right column, which will be the top-right corner of the page
            image = Image.open('BinDoc Logo (Quadratisch).png')
            st.image(image, use_column_width='always')

            
        if not os.path.exists(pdf_path2):
            st.error("File not found. Please check the file path.")
            return

        VectorStore = load_vector_store(pdf_path3, "Kosten_Str_2301", force_reload=False)



        display_chat_history(st.session_state['chat_history_page3'])

        st.write("<!-- Start Spacer -->", unsafe_allow_html=True)
        st.write("<div style='flex: 1;'></div>", unsafe_allow_html=True)
        st.write("<!-- End Spacer -->", unsafe_allow_html=True)

        new_messages_placeholder = st.empty()

        query = st.text_input("Ask questions about your PDF file (in any preferred language):")

        add_vertical_space(2)  # Adjust as per the desired spacing
        
        # Create two columns for the buttons
        col1, col2 = st.columns(2)
        
        with col1:
            if st.button("Wie hat sich die Bettenanzahl in den letzten 10 Jahren entwickelt?"):
                query = "Wie hat sich die Bettenanzahl in den letzten 10 Jahren entwickelt?"
            if st.button("Wie viele Patienten werden pro Jahr vollstationär behandelt?"):
                query = ("Wie viele Patienten werden pro Jahr vollstationär behandelt?")
            if st.button("Wie viele Vollkräfte arbeiten in Summe in deutschen Krankenhäusern?"):
                query = "Wie viele Vollkräfte arbeiten in Summe in deutschen Krankenhäusern? "

        
        with col2:
            if st.button("Welche unterschiedlichen Personalkosten gibt es im Krankenhaus?"):
                query = "Welche unterschiedlichen Personalkosten gibt es im Krankenhaus?"
            if st.button("Welche Sachkosten werden in Krankenhäusern unterschieden?"):
                query = "Welche Sachkosten werden in Krankenhäusern unterschieden? "
            if st.button("Wie hoch sind die Gesamtkosten der Krankenhäuser pro Jahr?"):
                query = "Wie hoch sind die Gesamtkosten der Krankenhäuser pro Jahr?"

    

        if query:
            full_query = ask_bot(query)
            st.session_state['chat_history_page3'].append(("User", query, "new"))

            # Start timing
            start_time = time.time()
            
            with st.spinner('Bot is thinking...'):
                chain = load_chatbot()
                docs = VectorStore.similarity_search(query=query, k=5)
                with get_openai_callback() as cb:
                    response = chain.run(input_documents=docs, question=full_query)
                    response = handle_no_answer(response)  # Process the response through the new function
                    
            # Stop timing
            end_time = time.time()
            
            # Calculate duration
            duration = end_time - start_time

            # You can use Streamlit's text function to display the timing
            st.text(f"Response time: {duration:.2f} seconds")

            st.session_state['chat_history_page3'].append(("Bot", response, "new"))


            # Display new messages at the bottom
            new_messages = st.session_state['chat_history_page3'][-2:]
            for chat in new_messages:
                background_color = "#ffeecf" if chat[2] == "new" else "#ffeecf" if chat[0] == "User" else "#ffeecf"
                new_messages_placeholder.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)

            
            save_conversation(st.session_state['chat_history_page3'], st.session_state['session_id'], 3)

            # Clear the input field after the query is made
            query = ""

        # Mark all messages as old after displaying
        st.session_state['chat_history_page3'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history_page3']]

    except Exception as e:
        st.error(f"Upsi, an unexpected error occurred: {e}")
        # Optionally log the exception details to a file or error tracking service



def main():
    # Sidebar content
    with st.sidebar:
        st.title('BinDoc GmbH')
        st.markdown("Experience revolutionary interaction with BinDocs Chat App, leveraging state-of-the-art AI technology.")
        add_vertical_space(1)
        page = st.sidebar.selectbox("Choose a page", ["KH_Reform", "Kennzahlenbuch 100 Kennzahlen", "Kosten- und Strukturdaten der Krankenhäuser"])
        add_vertical_space(1)
        st.write('Made with ❤️ by BinDoc GmbH')

    # Main area content based on page selection
    if page == "KH_Reform":
        page1()
    elif page == "Kennzahlenbuch 100 Kennzahlen":
        page2()
    elif page == "Kosten- und Strukturdaten der Krankenhäuser":
        page3()


if __name__ == "__main__":
    main()