Spaces:
Sleeping
Sleeping
File size: 24,869 Bytes
d0ba0ce 944017e 118380a 02cc2be d0ba0ce 7c95914 d0ba0ce 7c95914 d0ba0ce 19210a1 7c95914 71ceb20 f6bf684 3e6af9f 1c86f62 8e350f6 206f2ac df93392 45a9294 44c0e78 668775b 44c0e78 92932f6 44c0e78 af8c165 266d4b2 13e1f31 d0ba0ce 13e1f31 45a9294 3e6af9f a98948f 72a2744 45a9294 7f3e938 c88d52e 7f3e938 e9402a1 b5cf26b e9402a1 7f3e938 e9402a1 b5cf26b 7f3e938 96208c1 b5cf26b 96208c1 7f3e938 e9402a1 4c887e6 7c95914 72a2744 2b04423 d0ba0ce d06a457 238d307 3e6af9f 1e4efde 3e6af9f 9deba2d 0272cf0 9deba2d 6c0a950 118380a 6c0a950 e9402a1 9deba2d 118380a 0272cf0 3e6af9f 57b73ce 3031f8e 57b73ce 3031f8e 960b433 19210a1 eaccf69 df93392 51c6da7 eaccf69 df93392 1b4370e eaccf69 df93392 64e0554 df93392 1b4370e eaccf69 19210a1 64e0554 eaccf69 19210a1 7244e04 19210a1 7755b19 51c6da7 cf911b9 ed3f96e eaccf69 ed3f96e 1b4370e 7755b19 ed3f96e 51c6da7 19210a1 1b4370e 7755b19 3e6af9f 72a2744 dcd9708 45a9294 8e350f6 13e1f31 0d3004a 8e350f6 45a9294 8e350f6 45a9294 a73099f 3e6af9f 72a2744 a73099f 45a9294 a73099f 45a9294 a73099f 8e350f6 a73099f 45a9294 a73099f 13e1f31 a73099f 3031f8e a73099f eaccf69 4b09695 eaccf69 a73099f 9ccf87a a73099f d0ba0ce 72a2744 713303c d0ba0ce 3e6af9f 1c86f62 13e1f31 1c86f62 9ccf87a 1c86f62 9ccf87a 1c86f62 9ccf87a 1c86f62 9ccf87a 1c86f62 9ccf87a 1c86f62 9ccf87a eaccf69 4b09695 eaccf69 1c86f62 9ccf87a 1c86f62 9ccf87a 1c86f62 45a9294 206f2ac 13e1f31 206f2ac 9ccf87a 206f2ac 9ccf87a 206f2ac 9ccf87a 206f2ac 9ccf87a 206f2ac 9ccf87a 206f2ac 9ccf87a d8e124d 206f2ac 9ccf87a eaccf69 206f2ac 9ccf87a 206f2ac 45a9294 3e6af9f b5cf26b 3e6af9f b5cf26b 3e6af9f d5fc916 b5cf26b 206f2ac abd1f1b 72a2744 0da8351 4b3134c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 |
import streamlit as st
from PIL import Image
import random
import time
from dotenv import load_dotenv
import pickle
from huggingface_hub import Repository
from PyPDF2 import PdfReader
from streamlit_extras.add_vertical_space import add_vertical_space
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.llms import OpenAI
from langchain.chains.question_answering import load_qa_chain
from langchain.callbacks import get_openai_callback
import os
import uuid
import json
import pandas as pd
import pydeck as pdk
from urllib.error import URLError
# Initialize session state variables
if 'chat_history_page1' not in st.session_state:
st.session_state['chat_history_page1'] = []
if 'chat_history_page2' not in st.session_state:
st.session_state['chat_history_page2'] = []
if 'chat_history_page3' not in st.session_state:
st.session_state['chat_history_page3'] = []
# This session ID will be unique per user session and consistent across all pages.
if 'session_id' not in st.session_state:
st.session_state['session_id'] = str(uuid.uuid4())
# Step 1: Clone the Dataset Repository
repo = Repository(
local_dir="Private_Book", # Local directory to clone the repository
repo_type="dataset", # Specify that this is a dataset repository
clone_from="Anne31415/Private_Book", # Replace with your repository URL
token=os.environ["HUB_TOKEN"] # Use the secret token to authenticate
)
repo.git_pull() # Pull the latest changes (if any)
# Step 1: Clone the ChatSet Repository - save all the chats anonymously
repo2 = Repository(
local_dir="Chat_Store", # Local directory to clone the repository
repo_type="dataset", # Specify that this is a dataset repository
clone_from="Anne31415/Chat_Store", # Replace with your repository URL
token=os.environ["HUB_TOKEN"] # Use the secret token to authenticate
)
repo.git_pull() # Pull the latest changes (if any)
# Step 2: Load the PDF File
pdf_path = "Private_Book/KH_Reform230124.pdf" # Replace with your PDF file path
pdf_path2 = "Private_Book/Buch_23012024.pdf"
pdf_path3 = "Private_Book/Kosten_Grunddaten_KH_230124.pdf"
api_key = os.getenv("OPENAI_API_KEY")
# Retrieve the API key from st.secrets
# Updated load_vector_store function with Streamlit text outputs and directory handling for Git
@st.cache_data(persist="disk")
def load_vector_store(file_path, store_name, force_reload=False):
local_repo_path = "Private_Book"
vector_store_path = os.path.join(local_repo_path, f"{store_name}.pkl")
# Check if vector store already exists and force_reload is False
if not force_reload and os.path.exists(vector_store_path):
with open(vector_store_path, "rb") as f:
VectorStore = pickle.load(f)
#st.text(f"Loaded existing vector store from {vector_store_path}")
else:
# Load and process the PDF, then create the vector store
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200, length_function=len)
text = load_pdf_text(file_path)
chunks = text_splitter.split_text(text=text)
embeddings = OpenAIEmbeddings()
VectorStore = FAISS.from_texts(chunks, embedding=embeddings)
# Serialize the vector store
with open(vector_store_path, "wb") as f:
pickle.dump(VectorStore, f)
#st.text(f"Created and saved vector store at {vector_store_path}")
# Change working directory for Git operations
original_dir = os.getcwd()
os.chdir(local_repo_path)
try:
# Check current working directory and list files for debugging
#st.text(f"Current working directory: {os.getcwd()}")
#st.text(f"Files in current directory: {os.listdir()}")
# Adjusted file path for Git command
repo.git_add(f"{store_name}.pkl") # Use just the file name
repo.git_commit(f"Update vector store: {store_name}")
repo.git_push()
except Exception as e:
st.error(f"Error during Git operations: {e}")
finally:
# Change back to the original directory
os.chdir(original_dir)
return VectorStore
# Utility function to load text from a PDF
def load_pdf_text(file_path):
pdf_reader = PdfReader(file_path)
text = ""
for page in pdf_reader.pages:
text += page.extract_text() or "" # Add fallback for pages where text extraction fails
return text
def load_chatbot():
#return load_qa_chain(llm=OpenAI(), chain_type="stuff")
return load_qa_chain(llm=OpenAI(model_name="gpt-3.5-turbo-instruct"), chain_type="stuff")
def display_chat_history(chat_history):
for chat in chat_history:
background_color = "#ffeecf" if chat[2] == "new" else "#ffeecf" if chat[0] == "User" else "#ffeecf"
st.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)
def handle_no_answer(response):
no_answer_phrases = [
"ich weiß es nicht",
"ich weiß nicht",
"ich bin mir nicht sicher",
"es wird nicht erwähnt",
"Leider kann ich diese Frage nicht beantworten",
"kann ich diese Frage nicht beantworten",
"ich kann diese Frage nicht beantworten",
"ich kann diese Frage leider nicht beantworten",
"keine information",
"das ist unklar",
"da habe ich keine antwort",
"das kann ich nicht beantworten",
"i don't know",
"i am not sure",
"it is not mentioned",
"no information",
"that is unclear",
"i have no answer",
"i cannot answer that",
"unable to provide an answer",
"not enough context",
"Sorry, I do not have enough information",
"I do not have enough information",
"I don't have enough information",
"Sorry, I don't have enough context to answer that question.",
"I don't have enough context to answer that question.",
"to answer that question.",
"Sorry",
"I'm sorry",
"I don't understand the question",
"I don't understand"
]
alternative_responses = [
"Hmm, das ist eine knifflige Frage. Lass uns das gemeinsam erkunden. Kannst du mehr Details geben?",
"Interessante Frage! Ich bin mir nicht sicher, aber wir können es herausfinden. Hast du weitere Informationen?",
"Das ist eine gute Frage. Ich habe momentan keine Antwort darauf, aber vielleicht kannst du sie anders formulieren?",
"Da bin ich überfragt. Kannst du die Frage anders stellen oder mir mehr Kontext geben?",
"Ich stehe hier etwas auf dem Schlauch. Gibt es noch andere Aspekte der Frage, die wir betrachten könnten?",
# Add more alternative responses as needed
]
# Check if response matches any phrase in no_answer_phrases
if any(phrase in response.lower() for phrase in no_answer_phrases):
return random.choice(alternative_responses) # Randomly select a response
return response
def ask_bot(query):
# Definiere den standardmäßigen Prompt
standard_prompt = "Schreibe immer höflich und auf antworte immer in der Sprache in der der User auch schreibt. Formuliere immer ganze freundliche ganze Sätze und biete wenn möglich auch mehr Informationen (aber nicht mehr als 1 Satz mehr). Wenn der User sehr vage schreibt frage nach. Wenn du zu einer bestimmten Frage Daten aus mehreren Jahren hast, frage den User für welche Jahre er sich interessiert und nenne ihm natürlich Möglichkeiten über die Jahre die du hast. "
# Kombiniere den standardmäßigen Prompt mit der Benutzeranfrage
full_query = standard_prompt + query
return full_query
def save_conversation(chat_histories, session_id):
base_path = "Chat_Store/conversation_logs"
if not os.path.exists(base_path):
os.makedirs(base_path)
filename = f"{base_path}/{session_id}.json"
# Check if the log file already exists
existing_data = {"page1": [], "page2": [], "page3": []}
if os.path.exists(filename):
with open(filename, 'r', encoding='utf-8') as file:
existing_data = json.load(file)
# Append the new chat history to the existing data for each page
for page_number, chat_history in enumerate(chat_histories, start=1):
existing_data[f"page{page_number}"] += chat_history
with open(filename, 'w', encoding='utf-8') as file:
json.dump(existing_data, file, indent=4, ensure_ascii=False)
# Git operations
try:
# Change directory to Chat_Store for Git operations
original_dir = os.getcwd()
os.chdir('Chat_Store')
# Correct file path relative to the Git repository's root
git_file_path = f"conversation_logs/{session_id}.json"
repo2.git_add(git_file_path)
repo2.git_commit(f"Add/update conversation log for session {session_id}")
repo2.git_push()
# Change back to the original directory
os.chdir(original_dir)
except Exception as e:
st.error(f"Error during Git operations: {e}")
def page1():
try:
hide_streamlit_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
# Create columns for layout
col1, col2 = st.columns([3, 1]) # Adjust the ratio to your liking
with col1:
st.title("KH_reform!")
with col2:
# Load and display the image in the right column, which will be the top-right corner of the page
image = Image.open('BinDoc Logo (Quadratisch).png')
st.image(image, use_column_width='always')
if not os.path.exists(pdf_path):
st.error("File not found. Please check the file path.")
return
VectorStore = load_vector_store(pdf_path, "KH_Reform_2301", force_reload=False)
display_chat_history(st.session_state['chat_history_page1'])
st.write("<!-- Start Spacer -->", unsafe_allow_html=True)
st.write("<div style='flex: 1;'></div>", unsafe_allow_html=True)
st.write("<!-- End Spacer -->", unsafe_allow_html=True)
new_messages_placeholder = st.empty()
query = st.text_input("Geben Sie hier Ihre Frage ein / Enter your question here:")
add_vertical_space(2) # Adjust as per the desired spacing
# Create two columns for the buttons
col1, col2 = st.columns(2)
with col1:
if st.button("Wie viele Ärzte benötigt eine Klinik in der Leistungsgruppe Stammzell-transplantation?"):
query = "Wie viele Ärzte benötigt eine Klinik in der Leistungsgruppe Stammzell-transplantation?"
if st.button("Wie viele Leistungsgruppen gibt es?"):
query = ("Wie viele Leistungsgruppen gibt es?")
if st.button("Was sind die hauptsächlichen Änderungsvorhaben der Krankenhausreform?"):
query = "Was sind die hauptsächlichen Änderungsvorhaben der Krankenhausreform?"
with col2:
if st.button("Welche und wieviele Fachärzte benötige ich für die Leistungsgruppe Pädiatrie? "):
query = "Welche und wieviele Fachärzte benötige ich für die Leistungsgruppe Pädiatrie"
if st.button("Was soll die Reform der Notfallversorgung beinhalten?"):
query = "Was soll die Reform der Notfallversorgung beinhalten?"
if st.button("Was bedeutet die Vorhaltefinanzierung?"):
query = "Was bedeutet die Vorhaltefinanzierung?"
if query:
full_query = ask_bot(query)
st.session_state['chat_history_page1'].append(("User", query, "new"))
# Start timing
start_time = time.time()
with st.spinner('Bot is thinking...'):
chain = load_chatbot()
docs = VectorStore.similarity_search(query=query, k=5)
with get_openai_callback() as cb:
response = chain.run(input_documents=docs, question=full_query)
response = handle_no_answer(response) # Process the response through the new function
# Stop timing
end_time = time.time()
# Calculate duration
duration = end_time - start_time
# You can use Streamlit's text function to display the timing
st.text(f"Response time: {duration:.2f} seconds")
st.session_state['chat_history_page1'].append(("Bot", response, "new"))
# Display new messages at the bottom
new_messages = st.session_state['chat_history_page1'][-2:]
for chat in new_messages:
background_color = "#ffeecf" if chat[2] == "new" else "#ffeecf" if chat[0] == "User" else "#ffeecf"
new_messages_placeholder.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)
# Save the chat historie in sepearte files
save_conversation(st.session_state['chat_history_page1'], st.session_state['session_id'], 1)
# Display the current working directory after save_conversation
#current_dir = os.getcwd()
#st.text(f"Current working directory after save_conversation: {current_dir}")
# Clear the input field after the query is made
query = ""
# Mark all messages as old after displaying
st.session_state['chat_history_page1'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history_page1']]
except Exception as e:
st.error(f"Upsi, an unexpected error occurred: {e}")
# Optionally log the exception details to a file or error tracking service
def page2():
try:
hide_streamlit_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
# Create columns for layout
col1, col2 = st.columns([3, 1]) # Adjust the ratio to your liking
with col1:
st.title("Kennzahlenbuch 100 Kennzahlen!")
with col2:
# Load and display the image in the right column, which will be the top-right corner of the page
image = Image.open('BinDoc Logo (Quadratisch).png')
st.image(image, use_column_width='always')
if not os.path.exists(pdf_path2):
st.error("File not found. Please check the file path.")
return
VectorStore = load_vector_store(pdf_path2, "Buch_2301", force_reload=False)
display_chat_history(st.session_state['chat_history_page2'])
st.write("<!-- Start Spacer -->", unsafe_allow_html=True)
st.write("<div style='flex: 1;'></div>", unsafe_allow_html=True)
st.write("<!-- End Spacer -->", unsafe_allow_html=True)
new_messages_placeholder = st.empty()
query = st.text_input("Ask questions about your PDF file (in any preferred language):")
add_vertical_space(2) # Adjust as per the desired spacing
# Create two columns for the buttons
col1, col2 = st.columns(2)
with col1:
if st.button("Nenne mir 5 wichtige Personalkennzahlen im Krankenhaus."):
query = "Nenne mir 5 wichtige Personalkennzahlen im Krankenhaus."
if st.button("Wie ist die durchschnittliche Bettenauslastung eines Krankenhauses?"):
query = ("Wie ist die durchschnittliche Bettenauslastung eines Krankenhauses?")
if st.button("Welches sind die häufigsten DRGs, die von den Krankenhäusern abgerechnet werden?"):
query = "Welches sind die häufigsten DRGs, die von den Krankenhäusern abgerechnet werden? "
with col2:
if st.button("Wie viel Casemixpunkte werden im Median von einer ärztlichen Vollkraft erbracht?"):
query = "Wie viel Casemixpunkte werden im Median von einer ärztlichen Vollkraft erbracht?"
if st.button("Bitte erstelle mir einer Übersicht der wichtiger Strukturkennzahlen eines Krankenhauses der Grund- und Regelversorgung."):
query = "Bitte erstelle mir einer Übersicht der wichtiger Strukturkennzahlen eines Krankenhauses der Grund- und Regelversorgung."
if st.button("Wie viele Patienten eines Grund- und Regelversorgers kommen aus welcher Fahrzeitzone?"):
query = "Wie viele Patienten eines Grund- und Regelversorgers kommen aus welcher Fahrzeitzone?"
if query:
full_query = ask_bot(query)
st.session_state['chat_history_page2'].append(("User", query, "new"))
# Start timing
start_time = time.time()
with st.spinner('Bot is thinking...'):
chain = load_chatbot()
docs = VectorStore.similarity_search(query=query, k=5)
with get_openai_callback() as cb:
response = chain.run(input_documents=docs, question=full_query)
response = handle_no_answer(response) # Process the response through the new function
# Stop timing
end_time = time.time()
# Calculate duration
duration = end_time - start_time
# You can use Streamlit's text function to display the timing
st.text(f"Response time: {duration:.2f} seconds")
st.session_state['chat_history_page2'].append(("Bot", response, "new"))
# Save the chat historie in sepearte files
save_conversation(st.session_state['chat_history_page2'], st.session_state['session_id'], 2)
# Display new messages at the bottom
new_messages = st.session_state['chat_history_page2'][-2:]
for chat in new_messages:
background_color = "#ffeecf" if chat[2] == "new" else "#ffeecf" if chat[0] == "User" else "#ffeecf"
new_messages_placeholder.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)
# Clear the input field after the query is made
query = ""
# Mark all messages as old after displaying
st.session_state['chat_history_page2'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history_page2']]
except Exception as e:
st.error(f"Upsi, an unexpected error occurred: {e}")
# Optionally log the exception details to a file or error tracking service
def page3():
try:
hide_streamlit_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
# Create columns for layout
col1, col2 = st.columns([3, 1]) # Adjust the ratio to your liking
with col1:
st.title("Kosten- und Strukturdaten der Krankenhäuser")
with col2:
# Load and display the image in the right column, which will be the top-right corner of the page
image = Image.open('BinDoc Logo (Quadratisch).png')
st.image(image, use_column_width='always')
if not os.path.exists(pdf_path2):
st.error("File not found. Please check the file path.")
return
VectorStore = load_vector_store(pdf_path3, "Kosten_Str_2301", force_reload=False)
display_chat_history(st.session_state['chat_history_page3'])
st.write("<!-- Start Spacer -->", unsafe_allow_html=True)
st.write("<div style='flex: 1;'></div>", unsafe_allow_html=True)
st.write("<!-- End Spacer -->", unsafe_allow_html=True)
new_messages_placeholder = st.empty()
query = st.text_input("Ask questions about your PDF file (in any preferred language):")
add_vertical_space(2) # Adjust as per the desired spacing
# Create two columns for the buttons
col1, col2 = st.columns(2)
with col1:
if st.button("Wie hat sich die Bettenanzahl in den letzten 10 Jahren entwickelt?"):
query = "Wie hat sich die Bettenanzahl in den letzten 10 Jahren entwickelt?"
if st.button("Wie viele Patienten werden pro Jahr vollstationär behandelt?"):
query = ("Wie viele Patienten werden pro Jahr vollstationär behandelt?")
if st.button("Wie viele Vollkräfte arbeiten in Summe in deutschen Krankenhäusern?"):
query = "Wie viele Vollkräfte arbeiten in Summe in deutschen Krankenhäusern? "
with col2:
if st.button("Welche unterschiedlichen Personalkosten gibt es im Krankenhaus?"):
query = "Welche unterschiedlichen Personalkosten gibt es im Krankenhaus?"
if st.button("Welche Sachkosten werden in Krankenhäusern unterschieden?"):
query = "Welche Sachkosten werden in Krankenhäusern unterschieden? "
if st.button("Wie hoch sind die Gesamtkosten der Krankenhäuser pro Jahr?"):
query = "Wie hoch sind die Gesamtkosten der Krankenhäuser pro Jahr?"
if query:
full_query = ask_bot(query)
st.session_state['chat_history_page3'].append(("User", query, "new"))
# Start timing
start_time = time.time()
with st.spinner('Bot is thinking...'):
chain = load_chatbot()
docs = VectorStore.similarity_search(query=query, k=5)
with get_openai_callback() as cb:
response = chain.run(input_documents=docs, question=full_query)
response = handle_no_answer(response) # Process the response through the new function
# Stop timing
end_time = time.time()
# Calculate duration
duration = end_time - start_time
# You can use Streamlit's text function to display the timing
st.text(f"Response time: {duration:.2f} seconds")
st.session_state['chat_history_page3'].append(("Bot", response, "new"))
# Display new messages at the bottom
new_messages = st.session_state['chat_history_page3'][-2:]
for chat in new_messages:
background_color = "#ffeecf" if chat[2] == "new" else "#ffeecf" if chat[0] == "User" else "#ffeecf"
new_messages_placeholder.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)
save_conversation(st.session_state['chat_history_page3'], st.session_state['session_id'], 3)
# Clear the input field after the query is made
query = ""
# Mark all messages as old after displaying
st.session_state['chat_history_page3'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history_page3']]
except Exception as e:
st.error(f"Upsi, an unexpected error occurred: {e}")
# Optionally log the exception details to a file or error tracking service
def main():
# Sidebar content
with st.sidebar:
st.title('BinDoc GmbH')
st.markdown("Experience revolutionary interaction with BinDocs Chat App, leveraging state-of-the-art AI technology.")
add_vertical_space(1)
page = st.sidebar.selectbox("Choose a page", ["KH_Reform", "Kennzahlenbuch 100 Kennzahlen", "Kosten- und Strukturdaten der Krankenhäuser"])
add_vertical_space(1)
st.write('Made with ❤️ by BinDoc GmbH')
# Main area content based on page selection
if page == "KH_Reform":
page1()
elif page == "Kennzahlenbuch 100 Kennzahlen":
page2()
elif page == "Kosten- und Strukturdaten der Krankenhäuser":
page3()
if __name__ == "__main__":
main() |