File size: 2,915 Bytes
c6ebbf7
 
 
 
9761446
c6ebbf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
from transformers import BertModel, BertTokenizer, AdamW, get_linear_schedule_with_warmup
from sklearn.metrics import  classification_report, f1_score
from torch.utils.data import Dataset, DataLoader
from tqdm.auto import tqdm
from config import params
from torch import nn
import pandas as pd
import numpy as np
import warnings
import random
import torch
import os

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")


class Dataset(Dataset):
  def __init__(self, texts, max_len):
    self.texts = texts
    self.tokenizer = BertTokenizer.from_pretrained(params['pretrained_model_name'])
    self.max_len = max_len

  def __len__(self):
    return len(self.texts)

  def __getitem__(self, item):
    text = str(self.texts[item])
    encoding = self.tokenizer.encode_plus(
      text,
      add_special_tokens=True,
      max_length=self.max_len,
      return_token_type_ids=False,
      pad_to_max_length=True,
      return_attention_mask=True,
      truncation=True,
      return_tensors='pt',
    )

    return {
      'text': text,
      'input_ids': encoding['input_ids'].flatten(),
      'attention_mask': encoding['attention_mask'].flatten(),
    }

class SentimentClassifier(nn.Module):

  def __init__(self, n_classes):
    super(SentimentClassifier, self).__init__()
    self.bert = BertModel.from_pretrained(params['pretrained_model_name'])
    self.drop = nn.Dropout(params['dropout'])
    self.out = nn.Linear(self.bert.config.hidden_size, n_classes)

  def forward(self, input_ids, attention_mask):
    
    bert_output = self.bert(
      input_ids=input_ids,
      attention_mask=attention_mask,
      return_dict=False
    )
    last_hidden_state, pooled_output = bert_output
    output = self.drop(pooled_output)
    return self.out(output)


class PredictionModel:

    def __init__(self):
        self.model = SentimentClassifier(n_classes = 6)
        self.loss_fn = nn.CrossEntropyLoss().to(device)

    def create_data_loader(self, X_test, max_len, batch_size):
        ds = Dataset(
            texts= np.array(X_test),
            max_len=max_len
        )
        return DataLoader(
            ds,
            batch_size=batch_size
        )

    def predict(self, X_test: list):

        data_loader = self.create_data_loader(X_test, params['max_length'], params['batch_size'])
        self.model.load_state_dict(torch.load(params['path_to_model_bin']))
        self.model.eval()
        losses = []
        y_pred = []
        with torch.no_grad():
            for d in data_loader:
                input_ids = d["input_ids"].to(device)
                attention_mask = d["attention_mask"].to(device)
                outputs = self.model(
                    input_ids=input_ids,
                    attention_mask=attention_mask
                )
                _, preds = torch.max(outputs, dim=1)
                y_pred += preds.tolist()
        return y_pred