Spaces:
Runtime error
Runtime error
File size: 1,383 Bytes
f46aee3 5c22f66 f46aee3 3b9b817 f46aee3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
from flask import Flask, request, jsonify
from PIL import Image
import io
import base64
import logging
import numpy as np
app = Flask(__name__)
# Dummy pose recognition function
def recognize_pose(image):
# Replace with your model inference code
pose = "warrior" # Example dummy pose
return pose
@app.route('/api/recognize_pose', methods=['POST'])
def api_recognize_pose():
try:
# Decode the image from the request
image_data = request.json['image'].split(",")[1]
image_bytes = base64.b64decode(image_data)
image = Image.open(io.BytesIO(image_bytes))
# Preprocess and recognize pose
image = preprocess_image(image)
pose = recognize_pose(image)
return jsonify({'pose': pose})
except KeyError as ke:
logging.error(f"Key Error: {ke}")
return jsonify({'error': 'Invalid input data format'}), 400
except Exception as e:
logging.error(f"Unexpected error: {e}")
return jsonify({'error': str(e)}), 500
def preprocess_image(image):
# Example preprocessing; adjust as needed for your model
image = image.resize((224, 224)) # Resize image to expected input size
image = np.array(image) / 255.0 # Normalize image
image = np.expand_dims(image, axis=0) # Add batch dimension
return image
if __name__ == '__main__':
app.run(debug=True)
|