File size: 10,494 Bytes
5c22f66 31f0583 5c22f66 2aba1e9 5c22f66 15d0ea9 5c22f66 3b9b817 687dbec 3b9b817 687dbec 3b9b817 d20c619 687dbec 3b9b817 85b718d 3b9b817 85b718d 3b9b817 85b718d 3b9b817 85b718d 3b9b817 85b718d 3b9b817 8ef424c 3b9b817 15d0ea9 5c22f66 15d0ea9 5c22f66 15d0ea9 5c22f66 15d0ea9 5c22f66 15d0ea9 0a214bd 5c22f66 15d0ea9 f788148 b3a3e79 f788148 d157a6f 5c22f66 0a214bd 15d0ea9 0a214bd 15d0ea9 0a214bd 15d0ea9 0a214bd 15d0ea9 0a214bd aba5246 0a214bd ff59af3 15d0ea9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
#!/usr/bin/env python
from __future__ import annotations
import pathlib
import math
import gradio as gr
import cv2
import mediapipe as mp
import numpy as np
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_pose = mp.solutions.pose
TITLE = "MediaPipe Human Pose Estimation"
DESCRIPTION = "https://google.github.io/mediapipe/"
def calculateAngle(landmark1, landmark2, landmark3):
'''
This function calculates angle between three different landmarks.
Args:
landmark1: The first landmark containing the x,y and z coordinates.
landmark2: The second landmark containing the x,y and z coordinates.
landmark3: The third landmark containing the x,y and z coordinates.
Returns:
angle: The calculated angle between the three landmarks.
'''
# Get the required landmarks coordinates.
x1, y1 = landmark1.x, landmark1.y
x2, y2 = landmark2.x, landmark2.y
x3, y3 = landmark3.x, landmark3.y
# Calculate the angle between the three points
angle = math.degrees(math.atan2(y3 - y2, x3 - x2) - math.atan2(y1 - y2, x1 - x2))
# angle = abs(angle) # Convert the angle to an absolute value.
# Check if the angle is less than zero.
if angle < 0:
# Add 360 to the found angle.
angle += 360
# Return the calculated angle.
return angle
def classifyPose(landmarks, output_image, display=False):
'''
This function classifies yoga poses depending upon the angles of various body joints.
Args:
landmarks: A list of detected landmarks of the person whose pose needs to be classified.
output_image: A image of the person with the detected pose landmarks drawn.
display: A boolean value that is if set to true the function displays the resultant image with the pose label
written on it and returns nothing.
Returns:
output_image: The image with the detected pose landmarks drawn and pose label written.
label: The classified pose label of the person in the output_image.
'''
# Initialize the label of the pose. It is not known at this stage.
label = 'Unknown Pose'
# Specify the color (Red) with which the label will be written on the image.
color = (0, 0, 255)
# Calculate the required angles.
#----------------------------------------------------------------------------------------------------------------
# Get the angle between the left shoulder, elbow and wrist points.
left_elbow_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value],
landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value],
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value])
# Get the angle between the right shoulder, elbow and wrist points.
right_elbow_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value],
landmarks[mp_pose.PoseLandmark.RIGHT_ELBOW.value],
landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value])
# Get the angle between the left elbow, shoulder and hip points.
left_shoulder_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value],
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value],
landmarks[mp_pose.PoseLandmark.LEFT_HIP.value])
# Get the angle between the right hip, shoulder and elbow points.
right_shoulder_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value],
landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value],
landmarks[mp_pose.PoseLandmark.RIGHT_ELBOW.value])
# Get the angle between the left hip, knee and ankle points.
left_knee_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.LEFT_HIP.value],
landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value],
landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value])
# Get the angle between the right hip, knee and ankle points
right_knee_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value],
landmarks[mp_pose.PoseLandmark.RIGHT_KNEE.value],
landmarks[mp_pose.PoseLandmark.RIGHT_ANKLE.value])
#----------------------------------------------------------------------------------------------------------------
# Check for Five-Pointed Star Pose
if abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y - landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].y) < 100 and \
abs(landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].y - landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value].y) < 100 and \
abs(landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value].x - landmarks[mp_pose.PoseLandmark.RIGHT_ANKLE.value].x) > 200 and \
abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x - landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].x) > 200:
label = "Five-Pointed Star Pose"
# Check if it is the warrior II pose or the T pose.
if left_elbow_angle > 165 and left_elbow_angle < 195 and right_elbow_angle > 165 and right_elbow_angle < 195:
if left_shoulder_angle > 80 and left_shoulder_angle < 110 and right_shoulder_angle > 80 and right_shoulder_angle < 110:
if left_knee_angle > 165 and left_knee_angle < 195 or right_knee_angle > 165 and right_knee_angle < 195:
if left_knee_angle > 90 and left_knee_angle < 120 or right_knee_angle > 90 and right_knee_angle < 120:
label = 'Warrior II Pose'
if left_knee_angle > 160 and left_knee_angle < 195 and right_knee_angle > 160 and right_knee_angle < 195:
label = 'T Pose'
# Check if it is the tree pose.
if left_knee_angle > 165 and left_knee_angle < 195 or right_knee_angle > 165 and right_knee_angle < 195:
if left_knee_angle > 315 and left_knee_angle < 335 or right_knee_angle > 25 and right_knee_angle < 45:
label = 'Tree Pose'
# Check for Upward Salute Pose
if abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x - landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].x) < 100 and \
abs(landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].x - landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value].x) < 100 and \
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y < landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y and \
landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].y < landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value].y and \
abs(landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y - landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value].y) < 50:
label = "Upward Salute Pose"
# Check for Hands Under Feet Pose
if landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y > landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value].y and \
landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].y > landmarks[mp_pose.PoseLandmark.RIGHT_KNEE.value].y and \
abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x - landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value].x) < 50 and \
abs(landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].x - landmarks[mp_pose.PoseLandmark.RIGHT_ANKLE.value].x) < 50:
label = "Hands Under Feet Pose"
#----------------------------------------------------------------------------------------------------------------
# Check if the pose is classified successfully
if label != 'Unknown Pose':
# Update the color (to green) with which the label will be written on the image.
color = (0, 255, 0)
# Write the label on the output image.
cv2.putText(output_image, label, (220, 30),cv2.FONT_HERSHEY_PLAIN, 2, color, 2)
# Check if the resultant image is specified to be displayed.
if display:
# Display the resultant image.
plt.figure(figsize=[10,10])
plt.imshow(output_image[:,:,::-1]);plt.title("Output Image");plt.axis('off');
else:
# Return the output image and the classified label.
return output_image, label
def run(
image: np.ndarray,
model_complexity: int,
enable_segmentation: bool,
min_detection_confidence: float,
background_color: str,
) -> np.ndarray:
with mp_pose.Pose(
static_image_mode=True,
model_complexity=model_complexity,
enable_segmentation=enable_segmentation,
min_detection_confidence=min_detection_confidence,
) as pose:
results = pose.process(image)
res = image[:, :, ::-1].copy()
if enable_segmentation:
if background_color == "white":
bg_color = 255
elif background_color == "black":
bg_color = 0
elif background_color == "green":
bg_color = (0, 255, 0) # type: ignore
else:
raise ValueError
if results.segmentation_mask is not None:
res[results.segmentation_mask <= 0.1] = bg_color
else:
res[:] = bg_color
mp_drawing.draw_landmarks(
res,
results.pose_landmarks,
mp_pose.POSE_CONNECTIONS,
landmark_drawing_spec=mp_drawing_styles.get_default_pose_landmarks_style(),
)
if results.pose_landmarks:
res, pose_classification = classifyPose(results.pose_landmarks.landmark, res) #Pose Classification code
return res[:, :, ::-1]
model_complexities = list(range(3))
background_colors = ["white", "black", "green"]
image_paths = sorted(pathlib.Path("images").rglob("*.jpg"))
examples = [[path, model_complexities[1], True, 0.5, background_colors[0]] for path in image_paths]
demo = gr.Interface(
fn=run,
inputs=[
gr.Image(label="Input", type="numpy"),
gr.Radio(label="Model Complexity", choices=model_complexities, type="index", value=model_complexities[1]),
gr.Checkbox(label="Enable Segmentation", value=True),
gr.Slider(label="Minimum Detection Confidence", minimum=0, maximum=1, step=0.05, value=0.5),
gr.Radio(label="Background Color", choices=background_colors, type="value", value=background_colors[0]),
],
outputs=gr.Image(label="Output"),
examples=examples,
title=TITLE,
description=DESCRIPTION,
)
if __name__ == "__main__":
demo.queue().launch()
|