Spaces:
No application file
No application file
File size: 1,183 Bytes
d6e4d0e 83f7278 d6e4d0e 053c4f0 d6e4d0e 053c4f0 d6e4d0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
# loading model and Library
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import DataCollatorWithPadding
pipe = pipeline("SQL_Query_Generator", model="defog/sqlcoder-34b-alpha")
tokenizer = AutoTokenizer.from_pretrained("defog/sqlcoder-34b-alpha")
model = AutoModelForCausalLM.from_pretrained("defog/sqlcoder-34b-alpha")
raw_dataset= load_datset('sql_train_dataset.json')
#%% section 1 (preparing the dataset for fine tunning)
def tokenize_func(df):
return tokenizer(df['question'],df['answer'],truncation=True)
tokenize_dataset=raw_dataset.map(tokenize_func,batched=True)
data_collator = DataCollatorWithPadding(tokenizer=tokenizer, return_tensors="tf")
tf_train_dataset = tokenized_dataset["train"].to_tf_dataset(
columns=["attention_mask", "input_ids", "token_type_ids"],
label_cols=["answer"],
shuffle=True,
collate_fn=data_collator,
batch_size=8,
)
tf_validation_dataset = tokenized_datasets["validation"].to_tf_dataset(
columns=["attention_mask", "input_ids", "token_type_ids"],
label_cols=["answer"],
shuffle=False,
collate_fn=data_collator,
batch_size=8,
) |