File size: 34,187 Bytes
2b60478
 
 
 
 
 
 
 
 
 
ea9b12d
 
 
 
 
 
2b60478
 
 
 
 
6e82d28
ea9b12d
 
 
 
6e82d28
ea9b12d
 
 
 
 
 
 
700041a
ea9b12d
 
 
700041a
 
 
 
 
 
 
ea9b12d
 
 
 
 
 
 
 
b59c3d0
 
 
700041a
ea9b12d
 
6e82d28
 
b59c3d0
6e82d28
 
b59c3d0
700041a
ea9b12d
 
 
 
 
 
 
 
 
 
 
 
 
 
b59c3d0
ea9b12d
b59c3d0
ea9b12d
 
 
2b60478
 
 
 
6e82d28
b59c3d0
 
 
ea9b12d
b59c3d0
ea9b12d
b59c3d0
ea9b12d
b59c3d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea9b12d
 
 
 
6e82d28
b59c3d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e82d28
b59c3d0
ea9b12d
 
 
700041a
 
 
 
 
6e82d28
 
700041a
6e82d28
 
700041a
6e82d28
 
700041a
6e82d28
700041a
 
6e82d28
700041a
 
6e82d28
700041a
 
6e82d28
700041a
 
6e82d28
 
700041a
6e82d28
700041a
 
6e82d28
 
 
 
 
 
 
 
 
 
700041a
 
 
 
 
 
 
 
 
 
6e82d28
700041a
 
 
6e82d28
 
700041a
 
 
6e82d28
 
 
 
700041a
 
 
ea9b12d
b59c3d0
 
700041a
 
6e82d28
b59c3d0
 
 
 
 
 
 
 
 
 
6e82d28
 
 
 
 
ea9b12d
 
 
b59c3d0
 
ea9b12d
 
b59c3d0
ea9b12d
 
 
 
6e82d28
b59c3d0
ea9b12d
6e82d28
 
 
 
 
 
 
 
 
 
 
 
 
ea9b12d
b59c3d0
 
 
 
 
 
 
 
ea9b12d
 
 
 
6e82d28
b59c3d0
ea9b12d
6e82d28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea9b12d
b59c3d0
 
ea9b12d
b59c3d0
 
 
 
ea9b12d
b59c3d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea9b12d
b59c3d0
 
 
 
ea9b12d
 
 
b59c3d0
 
 
ea9b12d
b59c3d0
ea9b12d
b59c3d0
 
 
 
 
 
 
6e82d28
 
b59c3d0
 
 
 
 
 
 
 
ea9b12d
 
6e82d28
 
 
 
 
 
 
 
 
 
700041a
 
 
 
 
 
 
 
ea9b12d
 
6e82d28
700041a
6e82d28
 
 
700041a
 
 
 
 
6e82d28
 
 
 
 
 
 
700041a
 
 
 
 
 
 
 
 
 
 
 
 
 
6e82d28
 
 
 
 
 
 
 
 
 
 
 
 
700041a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b59c3d0
700041a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e82d28
700041a
 
 
 
 
 
6e82d28
700041a
 
 
 
b59c3d0
ea9b12d
6e82d28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea9b12d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b60478
 
ea9b12d
 
 
 
 
 
 
 
 
 
 
 
2b60478
 
 
 
ea9b12d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b60478
 
 
 
ea9b12d
2b60478
 
 
ea9b12d
 
 
 
 
 
 
 
 
 
 
 
 
2b60478
ea9b12d
2b60478
ea9b12d
 
 
 
 
 
 
2b60478
ea9b12d
 
 
2b60478
 
 
 
 
 
 
 
 
 
 
 
ea9b12d
2b60478
b869c66
 
 
2b60478
 
 
 
 
ea9b12d
 
2b60478
ea9b12d
2b60478
 
 
 
 
ea9b12d
2b60478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea9b12d
b869c66
 
 
 
 
ea9b12d
b869c66
 
ea9b12d
2b60478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "e25090fa-f990-4f1a-84f3-b12159eedae8",
   "metadata": {},
   "source": [
    "# Try out gradio"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "afd23321-1870-44af-82ed-bb241d055dfa",
   "metadata": {},
   "source": []
  },
  {
   "cell_type": "markdown",
   "id": "3bbee2e4-55c8-4b06-9929-72026edf7932",
   "metadata": {},
   "source": [
    "**Load prerequisites**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 57,
   "id": "f8c28d2d-8458-49fd-8ebf-5e729d6e861f",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Hardware accelerator e.g. GPU is available in the environment, but no `device` argument is passed to the `Pipeline` object. Model will be on CPU.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "First trip: We are a couple in our thirties traveling to Vienna for a three-day city trip. We’ll be staying at a friend’s house and plan to explore the city by sightseeing, strolling through the streets, visiting markets, and trying out great restaurants and cafés. We also hope to attend a classical music concert. Our journey to Vienna will be by train. \n",
      "\n",
      "Trip type: ['city trip', ['sightseeing'], 'variable weather / spring / autumn', 'luxury (including evening wear)', 'casual', 'indoor', 'no own vehicle', 'no special condition', '3 days']\n"
     ]
    }
   ],
   "source": [
    "# Prerequisites\n",
    "from tabulate import tabulate\n",
    "from transformers import pipeline\n",
    "import json\n",
    "import pandas as pd\n",
    "import matplotlib.pyplot as plt\n",
    "import pickle\n",
    "import os\n",
    "import time\n",
    "\n",
    "# Load the model and create a pipeline for zero-shot classification (1min loading + classifying with 89 labels)\n",
    "classifier = pipeline(\"zero-shot-classification\", model=\"cross-encoder/nli-deberta-v3-base\")\n",
    "model_name = 'model_cross-encoder-nli-deberta-v3-base'\n",
    "# tried:\n",
    "# cross-encoder/nli-deberta-v3-large  gave error\n",
    "# MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli\n",
    "# facebook/bart-large-mnli\n",
    "# sileod/deberta-v3-base-tasksource-nli\n",
    "\n",
    "# get candidate labels\n",
    "with open(\"packing_label_structure.json\", \"r\") as file:\n",
    "    candidate_labels = json.load(file)\n",
    "keys_list = list(candidate_labels.keys())\n",
    "\n",
    "# Load test data (in list of dictionaries)\n",
    "with open(\"test_data.json\", \"r\") as file:\n",
    "    packing_data = json.load(file)\n",
    "# Extract all trip descriptions and trip_types\n",
    "trip_descriptions = [trip['description'] for trip in packing_data]\n",
    "trip_types = [trip['trip_types'] for trip in packing_data]\n",
    "\n",
    "# Access the first trip description\n",
    "first_trip = trip_descriptions[1]\n",
    "# Get the packing list for the secondfirst trip\n",
    "first_trip_type = trip_types[1]\n",
    "\n",
    "print(f\"First trip: {first_trip} \\n\")\n",
    "print(f\"Trip type: {first_trip_type}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 58,
   "id": "3a762755-872d-43a6-b666-874d6133488c",
   "metadata": {},
   "outputs": [],
   "source": [
    "# function that returns pandas data frame with predictions\n",
    "\n",
    "cut_off = 0.5  # used to choose which activities are relevant\n",
    "\n",
    "def pred_trip(trip_descr, trip_type, cut_off):\n",
    "    # Create an empty DataFrame with specified columns\n",
    "    df = pd.DataFrame(columns=['superclass', 'pred_class'])\n",
    "    for i, key in enumerate(keys_list):\n",
    "        if key == 'activities':\n",
    "            result = classifier(trip_descr, candidate_labels[key], multi_label=True)\n",
    "            indices = [i for i, score in enumerate(result['scores']) if score > cut_off]\n",
    "            classes = [result['labels'][i] for i in indices]\n",
    "        else:\n",
    "            result = classifier(trip_descr, candidate_labels[key])\n",
    "            classes = result[\"labels\"][0]\n",
    "        print(result)\n",
    "        print(classes)\n",
    "        print(i)\n",
    "        df.loc[i] = [key, classes]\n",
    "    df['true_class'] = trip_type\n",
    "    return df"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 59,
   "id": "3b4f3193-3bdd-453c-8664-df84f955600c",
   "metadata": {},
   "outputs": [],
   "source": [
    "# function for accuracy, perc true classes identified and perc wrong pred classes\n",
    "\n",
    "def perf_measure(df):\n",
    "    df['same_value'] = df['pred_class'] == df['true_class']\n",
    "    correct = sum(df.loc[df.index != 1, 'same_value'])\n",
    "    total = len(df['same_value'])\n",
    "    accuracy = correct/total\n",
    "    pred_class = df.loc[df.index == 1, 'pred_class'].iloc[0]\n",
    "    true_class = df.loc[df.index == 1, 'true_class'].iloc[0]\n",
    "    correct = [label for label in pred_class if label in true_class]\n",
    "    num_correct = len(correct)\n",
    "    correct_perc = num_correct/len(true_class)\n",
    "    num_pred = len(pred_class)\n",
    "    wrong_perc = (num_pred - num_correct)/num_pred\n",
    "    df_perf = pd.DataFrame({\n",
    "    'accuracy': [accuracy],\n",
    "    'true_ident': [correct_perc],\n",
    "    'false_pred': [wrong_perc]\n",
    "    })\n",
    "    return(df_perf)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "62c5c18c-58f4-465c-a188-c57cfa7ffa90",
   "metadata": {},
   "source": [
    "**Now do the same for all trips**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 60,
   "id": "4dd01755-be8d-4904-8494-ac28aba2fee7",
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'sequence': 'I am planning a trip to Greece with my boyfriend, where we will visit two islands. We have booked an apartment on each island for a few days and plan to spend most of our time relaxing. Our main goals are to enjoy the beach, try delicious local food, and possibly go on a hike—if it’s not too hot. We will be relying solely on public transport. We’re in our late 20s and traveling from the Netherlands.', 'labels': ['micro-adventure / weekend trip', 'digital nomad trip', 'beach vacation', 'festival trip', 'city trip', 'cultural exploration', 'road trip (car/camper)', 'camping trip (wild camping)', 'long-distance hike / thru-hike', 'hut trek (winter)', 'ski tour / skitour', 'snowboard / splitboard trip', 'nature escape', 'yoga / wellness retreat', 'hut trek (summer)', 'camping trip (campground)'], 'scores': [0.9722680449485779, 0.007802918087691069, 0.0075571718625724316, 0.0022959215566515923, 0.0021305829286575317, 0.001222927705384791, 0.0009879637509584427, 0.000805296644102782, 0.0007946204277686775, 0.0007107199053280056, 0.0007009899127297103, 0.0006353880744427443, 0.0005838185315951705, 0.0005424902774393559, 0.0004807499353773892, 0.0004804217896889895]}\n",
      "micro-adventure / weekend trip\n",
      "0\n",
      "{'sequence': 'I am planning a trip to Greece with my boyfriend, where we will visit two islands. We have booked an apartment on each island for a few days and plan to spend most of our time relaxing. Our main goals are to enjoy the beach, try delicious local food, and possibly go on a hike—if it’s not too hot. We will be relying solely on public transport. We’re in our late 20s and traveling from the Netherlands.', 'labels': ['going to the beach', 'sightseeing', 'relaxing', 'hiking', 'hut-to-hut hiking', 'stand-up paddleboarding (SUP)', 'photography', 'biking', 'running', 'ski touring', 'snowshoe hiking', 'yoga', 'kayaking / canoeing', 'horseback riding', 'rafting', 'paragliding', 'cross-country skiing', 'surfing', 'skiing', 'ice climbing', 'fishing', 'snorkeling', 'swimming', 'rock climbing', 'scuba diving'], 'scores': [0.4660525321960449, 0.007281942293047905, 0.003730606520548463, 0.0001860307966126129, 0.00014064949937164783, 0.00011034693307010457, 5.2949126256862655e-05, 3.828677654382773e-05, 3.396756437723525e-05, 1.5346524378401227e-05, 9.348185812996235e-06, 8.182429155567661e-06, 6.5973340497293975e-06, 6.271920938161202e-06, 5.544673058466287e-06, 5.299102667777333e-06, 4.855380211665761e-06, 4.506250661506783e-06, 3.949530764657538e-06, 3.730233856913401e-06, 3.297281637060223e-06, 3.0508665531669976e-06, 2.933618134193239e-06, 2.6379277642263332e-06, 2.2992651338427095e-06]}\n",
      "[]\n",
      "1\n",
      "{'sequence': 'I am planning a trip to Greece with my boyfriend, where we will visit two islands. We have booked an apartment on each island for a few days and plan to spend most of our time relaxing. Our main goals are to enjoy the beach, try delicious local food, and possibly go on a hike—if it’s not too hot. We will be relying solely on public transport. We’re in our late 20s and traveling from the Netherlands.', 'labels': ['variable weather / spring / autumn', 'warm destination / summer', 'cold destination / winter', 'dry / desert-like', 'tropical / humid'], 'scores': [0.5934922695159912, 0.17430798709392548, 0.10943299531936646, 0.07068652659654617, 0.05208020657300949]}\n",
      "variable weather / spring / autumn\n",
      "2\n",
      "{'sequence': 'I am planning a trip to Greece with my boyfriend, where we will visit two islands. We have booked an apartment on each island for a few days and plan to spend most of our time relaxing. Our main goals are to enjoy the beach, try delicious local food, and possibly go on a hike—if it’s not too hot. We will be relying solely on public transport. We’re in our late 20s and traveling from the Netherlands.', 'labels': ['minimalist', 'ultralight', 'luxury (including evening wear)', 'lightweight (but comfortable)'], 'scores': [0.6965053081512451, 0.11270010471343994, 0.10676420480012894, 0.08403033763170242]}\n",
      "minimalist\n",
      "3\n",
      "{'sequence': 'I am planning a trip to Greece with my boyfriend, where we will visit two islands. We have booked an apartment on each island for a few days and plan to spend most of our time relaxing. Our main goals are to enjoy the beach, try delicious local food, and possibly go on a hike—if it’s not too hot. We will be relying solely on public transport. We’re in our late 20s and traveling from the Netherlands.', 'labels': ['casual', 'formal (business trip)', 'conservative'], 'scores': [0.6362482309341431, 0.22082458436489105, 0.14292724430561066]}\n",
      "casual\n",
      "4\n",
      "{'sequence': 'I am planning a trip to Greece with my boyfriend, where we will visit two islands. We have booked an apartment on each island for a few days and plan to spend most of our time relaxing. Our main goals are to enjoy the beach, try delicious local food, and possibly go on a hike—if it’s not too hot. We will be relying solely on public transport. We’re in our late 20s and traveling from the Netherlands.', 'labels': ['indoor', 'sleeping in a tent', 'huts with half board', 'sleeping in a car'], 'scores': [0.435793399810791, 0.20242486894130707, 0.19281964004039764, 0.16896207630634308]}\n",
      "indoor\n",
      "5\n",
      "{'sequence': 'I am planning a trip to Greece with my boyfriend, where we will visit two islands. We have booked an apartment on each island for a few days and plan to spend most of our time relaxing. Our main goals are to enjoy the beach, try delicious local food, and possibly go on a hike—if it’s not too hot. We will be relying solely on public transport. We’re in our late 20s and traveling from the Netherlands.', 'labels': ['no own vehicle', 'own vehicle'], 'scores': [0.9987181425094604, 0.0012818538816645741]}\n",
      "no own vehicle\n",
      "6\n",
      "{'sequence': 'I am planning a trip to Greece with my boyfriend, where we will visit two islands. We have booked an apartment on each island for a few days and plan to spend most of our time relaxing. Our main goals are to enjoy the beach, try delicious local food, and possibly go on a hike—if it’s not too hot. We will be relying solely on public transport. We’re in our late 20s and traveling from the Netherlands.', 'labels': ['self-supported (bring your own food/cooking)', 'no special conditions', 'off-grid / no electricity', 'rainy climate', 'child-friendly', 'snow and ice', 'pet-friendly', 'high alpine terrain', 'avalanche-prone terrain'], 'scores': [0.1984991431236267, 0.1695038080215454, 0.16221018135547638, 0.13200421631336212, 0.12101645022630692, 0.10550825297832489, 0.042406272143125534, 0.03797775134444237, 0.030873913317918777]}\n",
      "self-supported (bring your own food/cooking)\n",
      "7\n",
      "{'sequence': 'I am planning a trip to Greece with my boyfriend, where we will visit two islands. We have booked an apartment on each island for a few days and plan to spend most of our time relaxing. Our main goals are to enjoy the beach, try delicious local food, and possibly go on a hike—if it’s not too hot. We will be relying solely on public transport. We’re in our late 20s and traveling from the Netherlands.', 'labels': ['7+ days', '2 days', '1 day', '7 days', '5 days', '3 days', '6 days', '4 days'], 'scores': [0.4730822443962097, 0.1168912723660469, 0.10058756172657013, 0.0991850346326828, 0.05424537882208824, 0.053677864372730255, 0.051554784178733826, 0.050775907933712006]}\n",
      "7+ days\n",
      "8\n",
      "           superclass                                    pred_class  \\\n",
      "0       activity_type                micro-adventure / weekend trip   \n",
      "1          activities                                            []   \n",
      "2   climate_or_season            variable weather / spring / autumn   \n",
      "3    style_or_comfort                                    minimalist   \n",
      "4          dress_code                                        casual   \n",
      "5       accommodation                                        indoor   \n",
      "6      transportation                                no own vehicle   \n",
      "7  special_conditions  self-supported (bring your own food/cooking)   \n",
      "8    trip_length_days                                       7+ days   \n",
      "\n",
      "                                         true_class  \n",
      "0                                    beach vacation  \n",
      "1  [swimming, going to the beach, relaxing, hiking]  \n",
      "2                         warm destination / summer  \n",
      "3                     lightweight (but comfortable)  \n",
      "4                                            casual  \n",
      "5                                            indoor  \n",
      "6                                    no own vehicle  \n",
      "7                             no special conditions  \n",
      "8                                           7+ days  \n"
     ]
    },
    {
     "ename": "ZeroDivisionError",
     "evalue": "division by zero",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mZeroDivisionError\u001b[0m                         Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[60], line 13\u001b[0m\n\u001b[1;32m     10\u001b[0m \u001b[38;5;28mprint\u001b[39m(df)\n\u001b[1;32m     12\u001b[0m \u001b[38;5;66;03m# accuracy, perc true classes identified and perc wrong pred classes\u001b[39;00m\n\u001b[0;32m---> 13\u001b[0m performance \u001b[38;5;241m=\u001b[39m pd\u001b[38;5;241m.\u001b[39mconcat([performance, \u001b[43mperf_measure\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdf\u001b[49m\u001b[43m)\u001b[49m])\n\u001b[1;32m     14\u001b[0m \u001b[38;5;28mprint\u001b[39m(performance)\n\u001b[1;32m     16\u001b[0m result_list\u001b[38;5;241m.\u001b[39mappend(df)\n",
      "Cell \u001b[0;32mIn[59], line 14\u001b[0m, in \u001b[0;36mperf_measure\u001b[0;34m(df)\u001b[0m\n\u001b[1;32m     12\u001b[0m correct_perc \u001b[38;5;241m=\u001b[39m num_correct\u001b[38;5;241m/\u001b[39m\u001b[38;5;28mlen\u001b[39m(true_class)\n\u001b[1;32m     13\u001b[0m num_pred \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlen\u001b[39m(pred_class)\n\u001b[0;32m---> 14\u001b[0m wrong_perc \u001b[38;5;241m=\u001b[39m \u001b[43m(\u001b[49m\u001b[43mnum_pred\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m-\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mnum_correct\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m/\u001b[39;49m\u001b[43mnum_pred\u001b[49m\n\u001b[1;32m     15\u001b[0m df_perf \u001b[38;5;241m=\u001b[39m pd\u001b[38;5;241m.\u001b[39mDataFrame({\n\u001b[1;32m     16\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124maccuracy\u001b[39m\u001b[38;5;124m'\u001b[39m: [accuracy],\n\u001b[1;32m     17\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtrue_ident\u001b[39m\u001b[38;5;124m'\u001b[39m: [correct_perc],\n\u001b[1;32m     18\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mfalse_pred\u001b[39m\u001b[38;5;124m'\u001b[39m: [wrong_perc]\n\u001b[1;32m     19\u001b[0m })\n\u001b[1;32m     20\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m(df_perf)\n",
      "\u001b[0;31mZeroDivisionError\u001b[0m: division by zero"
     ]
    }
   ],
   "source": [
    "result_list = []\n",
    "performance = pd.DataFrame(columns=['accuracy', 'true_ident', 'false_pred'])\n",
    "\n",
    "start_time = time.time()\n",
    "\n",
    "for i in range(len(trip_descriptions)):\n",
    "    current_trip = trip_descriptions[i]\n",
    "    current_type = trip_types[i]\n",
    "    df = pred_trip(current_trip, current_type, cut_off = 0.5)\n",
    "    print(df)\n",
    "    \n",
    "    # accuracy, perc true classes identified and perc wrong pred classes\n",
    "    performance = pd.concat([performance, perf_measure(df)])\n",
    "    print(performance)\n",
    "    \n",
    "    result_list.append(df)\n",
    "\n",
    "end_time = time.time()\n",
    "\n",
    "elapsed_time = end_time - start_time"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b5c08703-7166-4d03-9d6b-ee2c12608134",
   "metadata": {},
   "source": [
    "**Compute average performance measures**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 61,
   "id": "eb33fd31-94e6-40b5-9c36-a32effe77c01",
   "metadata": {},
   "outputs": [
    {
     "ename": "IndexError",
     "evalue": "list index out of range",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mIndexError\u001b[0m                                Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[61], line 3\u001b[0m\n\u001b[1;32m      1\u001b[0m \u001b[38;5;66;03m# Extract \"same_value\" column from each DataFrame\u001b[39;00m\n\u001b[1;32m      2\u001b[0m sv_columns \u001b[38;5;241m=\u001b[39m [df[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124msame_value\u001b[39m\u001b[38;5;124m'\u001b[39m] \u001b[38;5;28;01mfor\u001b[39;00m df \u001b[38;5;129;01min\u001b[39;00m result_list]  \u001b[38;5;66;03m# 'same' needs to be changed\u001b[39;00m\n\u001b[0;32m----> 3\u001b[0m sv_columns\u001b[38;5;241m.\u001b[39minsert(\u001b[38;5;241m0\u001b[39m, \u001b[43mresult_list\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m]\u001b[49m[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124msuperclass\u001b[39m\u001b[38;5;124m'\u001b[39m])\n\u001b[1;32m      5\u001b[0m \u001b[38;5;66;03m# Combine into a new DataFrame (columns side-by-side)\u001b[39;00m\n\u001b[1;32m      6\u001b[0m sv_df \u001b[38;5;241m=\u001b[39m pd\u001b[38;5;241m.\u001b[39mconcat(sv_columns, axis\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m)\n",
      "\u001b[0;31mIndexError\u001b[0m: list index out of range"
     ]
    }
   ],
   "source": [
    "# Extract \"same_value\" column from each DataFrame\n",
    "sv_columns = [df['same_value'] for df in result_list]  # 'same' needs to be changed\n",
    "sv_columns.insert(0, result_list[0]['superclass'])\n",
    "\n",
    "# Combine into a new DataFrame (columns side-by-side)\n",
    "sv_df = pd.concat(sv_columns, axis=1)\n",
    "\n",
    "print(sv_df)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 62,
   "id": "bf7546cb-79ce-49ad-8cee-54d02239220c",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "           superclass  accuracy\n",
      "0       activity_type       0.8\n",
      "1          activities       0.0\n",
      "2   climate_or_season       0.5\n",
      "3    style_or_comfort       0.3\n",
      "4          dress_code       0.8\n",
      "5       accommodation       0.8\n",
      "6      transportation       0.7\n",
      "7  special_conditions       0.2\n",
      "8    trip_length_days       0.6\n"
     ]
    }
   ],
   "source": [
    "# Compute accuracy per superclass (row means of same_value matrix excluding the first column)\n",
    "row_means = sv_df.iloc[:, 1:].mean(axis=1)\n",
    "\n",
    "df_row_means = pd.DataFrame({\n",
    "    'superclass': sv_df['superclass'],\n",
    "    'accuracy': row_means\n",
    "})\n",
    "\n",
    "print(df_row_means)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "fd232953-59e8-4f28-9ce8-11515a2c310b",
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "# Compute performance measures per trip (mean for each column of performance table)\n",
    "column_means = performance.mean()\n",
    "print(column_means)\n",
    "\n",
    "# Plot histograms for all numeric columns\n",
    "performance.hist(bins=10, figsize=(10, 6))\n",
    "plt.tight_layout()\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "bd682c84-3eb1-4a8d-9621-b741e98e4537",
   "metadata": {},
   "outputs": [],
   "source": [
    "# save results\n",
    "# Structure to save\n",
    "model_result = {\n",
    "    'model': model_name,\n",
    "    'predictions': result_list,\n",
    "    'performance': performance,\n",
    "    'perf_summary': column_means,\n",
    "    'perf_superclass': df_row_means,\n",
    "    'elapsed_time': elapsed_time\n",
    "}\n",
    "\n",
    "# File path with folder\n",
    "filename = os.path.join('results', f'{model_name}_results.pkl')\n",
    "\n",
    "# Save the object\n",
    "with open(filename, 'wb') as f:\n",
    "    pickle.dump(model_result, f)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f38d0924-30b6-43cd-9bfc-fe5b0dc80411",
   "metadata": {},
   "outputs": [],
   "source": [
    "print(elapsed_time/60)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e1cbb54e-abe6-49b6-957e-0683196f3199",
   "metadata": {},
   "source": [
    "**Load and compare results**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 54,
   "id": "62ca82b0-6909-4e6c-9d2c-fed87971e5b6",
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Model: model_MoritzLaurer-DeBERTa-v3-base-mnli-fever-anli\n",
      "Performance Summary:\n",
      "accuracy      0.522222\n",
      "true_ident    0.841667\n",
      "false_pred    0.572381\n",
      "dtype: float64\n",
      "----------------------------------------\n",
      "Model: model_a_facebook-bart-large-mnli\n",
      "Performance Summary:\n",
      "accuracy      0.454545\n",
      "true_ident    0.689394\n",
      "false_pred    0.409091\n",
      "dtype: float64\n",
      "----------------------------------------\n",
      "Model: model_b_sileod-deberta-v3-base-tasksource-nli\n",
      "Performance Summary:\n",
      "accuracy      0.500000\n",
      "true_ident    0.666667\n",
      "false_pred    0.551667\n",
      "dtype: float64\n",
      "----------------------------------------\n",
      "Model: model_MoritzLaurer-DeBERTa-v3-base-mnli-fever-anli\n",
      "Performance Summary:\n",
      "           superclass  accuracy\n",
      "0       activity_type       0.8\n",
      "1          activities       0.0\n",
      "2   climate_or_season       0.5\n",
      "3    style_or_comfort       0.3\n",
      "4          dress_code       0.8\n",
      "5       accommodation       0.8\n",
      "6      transportation       0.7\n",
      "7  special_conditions       0.2\n",
      "8    trip_length_days       0.6\n",
      "----------------------------------------\n",
      "Model: model_a_facebook-bart-large-mnli\n",
      "Performance Summary:\n",
      "           superclass  accuracy\n",
      "0       activity_type       0.8\n",
      "1          activities       0.0\n",
      "2   climate_or_season       0.6\n",
      "3    style_or_comfort       0.4\n",
      "4          dress_code       0.7\n",
      "5       accommodation       0.3\n",
      "6      transportation       0.8\n",
      "7  special_conditions       0.0\n",
      "8    trip_length_days       0.5\n",
      "----------------------------------------\n",
      "Model: model_b_sileod-deberta-v3-base-tasksource-nli\n",
      "Performance Summary:\n",
      "           superclass  accuracy\n",
      "0       activity_type       0.7\n",
      "1          activities       0.1\n",
      "2   climate_or_season       0.6\n",
      "3    style_or_comfort       0.4\n",
      "4          dress_code       0.6\n",
      "5       accommodation       0.9\n",
      "6      transportation       0.7\n",
      "7  special_conditions       0.1\n",
      "8    trip_length_days       0.5\n",
      "----------------------------------------\n"
     ]
    }
   ],
   "source": [
    "# Folder where your .pkl files are saved\n",
    "results_dir = 'results'\n",
    "\n",
    "# Dictionary to store all loaded results\n",
    "all_results = {}\n",
    "\n",
    "# Loop through all .pkl files in the folder\n",
    "for filename in os.listdir(results_dir):\n",
    "    if filename.endswith('.pkl'):\n",
    "        model_name = filename.replace('_results.pkl', '')  # Extract model name\n",
    "        file_path = os.path.join(results_dir, filename)\n",
    "        \n",
    "        # Load the result\n",
    "        with open(file_path, 'rb') as f:\n",
    "            result = pickle.load(f)\n",
    "            all_results[model_name] = result\n",
    "\n",
    "# Compare performance across models\n",
    "for model, data in all_results.items():\n",
    "    print(f\"Model: {model}\")\n",
    "    print(f\"Performance Summary:\\n{data['perf_summary']}\")\n",
    "    print(\"-\" * 40)\n",
    "\n",
    "\n",
    "# Compare performance across models\n",
    "for model, data in all_results.items():\n",
    "    print(f\"Model: {model}\")\n",
    "    print(f\"Performance Summary:\\n{data['perf_superclass']}\")\n",
    "    print(\"-\" * 40)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 69,
   "id": "57fd150d-1cda-4be5-806b-ef380469243a",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Model: model_MoritzLaurer-DeBERTa-v3-base-mnli-fever-anli\n",
      "Time in minutes for 10 trips:\n",
      "83.45150986512502\n",
      "----------------------------------------\n",
      "Model: model_a_facebook-bart-large-mnli\n"
     ]
    },
    {
     "ename": "KeyError",
     "evalue": "'elapsed_time'",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mKeyError\u001b[0m                                  Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[69], line 4\u001b[0m\n\u001b[1;32m      2\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m model, data \u001b[38;5;129;01min\u001b[39;00m all_results\u001b[38;5;241m.\u001b[39mitems():\n\u001b[1;32m      3\u001b[0m     \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mModel: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mmodel\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m----> 4\u001b[0m     \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mTime in minutes for 10 trips:\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;132;01m{\u001b[39;00mdata[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124melapsed_time\u001b[39m\u001b[38;5;124m'\u001b[39m]\u001b[38;5;241m/\u001b[39m\u001b[38;5;241m60\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m      5\u001b[0m     \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m-\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m*\u001b[39m \u001b[38;5;241m40\u001b[39m)\n",
      "\u001b[0;31mKeyError\u001b[0m: 'elapsed_time'"
     ]
    }
   ],
   "source": [
    "# Compare across models\n",
    "for model, data in all_results.items():\n",
    "    print(f\"Model: {model}\")\n",
    "    print(f\"Time in minutes for 10 trips:\\n{data['elapsed_time']/60}\")\n",
    "    print(\"-\" * 40)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "17483df4-55c4-41cd-b8a9-61f7a5c7e8a3",
   "metadata": {},
   "source": [
    "**Use gradio for user input**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 66,
   "id": "cb7fd425-d0d6-458d-97ca-2150dc55f206",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Running on local URL:  http://127.0.0.1:7861\n",
      "Running on public URL: https://aa06d5d85ffadaa92b.gradio.live\n",
      "\n",
      "This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"https://aa06d5d85ffadaa92b.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "0\n",
      "1\n",
      "2\n",
      "3\n",
      "4\n",
      "5\n",
      "6\n",
      "7\n",
      "8\n",
      "0\n",
      "1\n",
      "2\n",
      "3\n",
      "4\n",
      "5\n",
      "6\n",
      "7\n",
      "8\n"
     ]
    }
   ],
   "source": [
    "# use model with gradio\n",
    "from transformers import pipeline\n",
    "import gradio as gr\n",
    "\n",
    "# make a function for what I am doing\n",
    "def classify(text):\n",
    "    df = pd.DataFrame(columns=['Superclass', 'class'])\n",
    "    for i, key in enumerate(keys_list):\n",
    "        # Run the classification (ca 30 seconds classifying)\n",
    "        if key == 'activities':\n",
    "            result = classifier(text, candidate_labels[key], multi_label=True)\n",
    "            classes = [result['labels'][i] for i in indices]\n",
    "        else:\n",
    "            result = classifier(text, candidate_labels[key])\n",
    "            classes = result[\"labels\"][0]\n",
    "        print(i)\n",
    "        df.loc[i] = [key, classes]\n",
    "\n",
    "    return df\n",
    "\n",
    "demo = gr.Interface(\n",
    "    fn=classify,\n",
    "    inputs=\"text\",\n",
    "    outputs=\"dataframe\",\n",
    "    title=\"Zero-Shot Classification\",\n",
    "    description=\"Enter a text describing your trip\",\n",
    ")\n",
    "\n",
    "# Launch the Gradio app\n",
    "if __name__ == \"__main__\":\n",
    "    demo.launch(share=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8e856a9c-a66c-4c4b-b7cf-8c52abbbc6fa",
   "metadata": {},
   "source": [
    "Use model with gradio"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "521d9118-b59d-4cc6-b637-20202eaf8f33",
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Running on local URL:  http://127.0.0.1:7861\n",
      "Running on public URL: https://0f70ba5369d721cf8f.gradio.live\n",
      "\n",
      "This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"https://0f70ba5369d721cf8f.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Define the Gradio interface\n",
    "def classify(text):\n",
    "    return classifier(text, class_labels)\n",
    "\n",
    "demo = gr.Interface(\n",
    "    fn=classify,\n",
    "    inputs=\"text\",\n",
    "    outputs=\"json\",\n",
    "    title=\"Zero-Shot Classification\",\n",
    "    description=\"Enter a text describing your trip\",\n",
    ")\n",
    "\n",
    "# Launch the Gradio app\n",
    "if __name__ == \"__main__\":\n",
    "    demo.launch(share=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c8da1c90-d3a3-4b08-801c-b3afa17b2633",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python (huggingface_env)",
   "language": "python",
   "name": "huggingface_env"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.20"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}