File size: 36,174 Bytes
4ea53b9
 
 
 
 
 
 
 
 
 
 
 
 
e09837d
4ea53b9
 
 
 
 
 
 
 
 
f250d4a
 
4ea53b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2cd680
 
3727f5d
 
f250d4a
 
 
 
 
 
 
 
c2cd680
 
3727f5d
 
f250d4a
4ea53b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6d6e4e
6419576
 
a6d6e4e
 
 
4ea53b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6419576
 
 
 
 
 
 
 
 
 
 
4ea53b9
 
 
 
 
 
 
 
 
6419576
4ea53b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f250d4a
4ea53b9
 
 
 
 
 
 
 
 
 
f250d4a
 
4ea53b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f250d4a
 
4ea53b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a7e3b8
4ea53b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
import pandas as pd
import numpy as np
import torch
import string
import re
import random
import gradio as gr
from tqdm import tqdm
tqdm().pandas()

import nltk
from nltk.tokenize.treebank import TreebankWordDetokenizer
nltk.download('punkt')
nltk.download('punkt_tab')

# BERT imports
from transformers import BertForMaskedLM, BertTokenizer
# GPT2 imports
from transformers import GPT2LMHeadModel, GPT2Tokenizer
# BioBPT
from transformers import BioGptForCausalLM, BioGptTokenizer
# LLAMA
from transformers import LlamaTokenizer, LlamaForCausalLM
# FALCON
from transformers import AutoTokenizer, AutoModelForCausalLM

import mgr_sentences as smgr
import mgr_biases as bmgr
import mgr_requests as rq_mgr

from error_messages import *

import contextlib
autocast = contextlib.nullcontext
import gc

# Great article about handing big models - https://huggingface.co/blog/accelerate-large-models
def _getModelSafe(model_name, device):
  model = None
  tokenizer = None
  try:
    model, tokenizer = _getModel(model_name, device)
  except Exception as err:
    print(f"Loading Model Error: {err}")
    print("Cleaning the model...")
    model = None
    tokenizer = None
    torch.cuda.empty_cache()
    gc.collect()

  if model == None or tokenizer == None:
    print("Cleaned, trying reloading....")
    model, tokenizer = _getModel(model_name, device)

  return model, tokenizer

def _getModel(model_name, device):
  if "bert" in model_name.lower():
    tokenizer = BertTokenizer.from_pretrained(model_name)
    model = BertForMaskedLM.from_pretrained(model_name)
  elif "biogpt" in model_name.lower():
    tokenizer = BioGptTokenizer.from_pretrained(model_name)
    model = BioGptForCausalLM.from_pretrained(model_name)
  elif 'gpt2' in model_name.lower():
    tokenizer = GPT2Tokenizer.from_pretrained(model_name)
    model = GPT2LMHeadModel.from_pretrained(model_name)
  elif 'llama' in model_name.lower():
    print(f"Getting LLAMA model: {model_name}")
    tokenizer = LlamaTokenizer.from_pretrained(model_name)
    model = LlamaForCausalLM.from_pretrained(model_name,
                                        torch_dtype=torch.bfloat16,
                                        low_cpu_mem_usage=True, ##
                                        #use_safetensors=True, ##
                                        #offload_folder="offload",
                                        #offload_state_dict = True,
                                        #device_map='auto'
                                        )
  elif "falcon" in model_name.lower():
    print(f"Getting FALCON model: {model_name}")
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForCausalLM.from_pretrained(model_name,
                                        torch_dtype=torch.bfloat16,
                                        trust_remote_code=True,
                                        low_cpu_mem_usage=True, ##
                                        #use_safetensors=True, ##
                                        #offload_folder="offload",
                                        #offload_state_dict = True,
                                        #device_map='auto'
                                        )
  #model.tie_weights()
  if model == None:
    print("Model is empty!!!")
  else:
    model = model.to(device)
    model.eval()
    torch.set_grad_enabled(False)

  return model, tokenizer

def makeOrdGrpKey(row):
  grp_lst = [row['grp_term1'], row['grp_term2']]
  grp_lst.sort()

  return f"{grp_lst[0]}/{grp_lst[1]}"

def genMissingPairsSpec(bias_spec, test_sentences_df):
  print("--- GET MISSING BIAS PAIRS ---")
  g1, g2, a1, a2 = get_words(bias_spec)

  print("---Sentences---")
  print(list(test_sentences_df.columns))

  test_sentences_df['gr_cmp_key'] = test_sentences_df.progress_apply(makeOrdGrpKey, axis=1)
  
  print("---Sentences GRP KEY---")
  print(list(test_sentences_df.columns))

  grp_terms = g1 + g2
  att_terms = a1 + a2

  grp_cmp_dict = {}
  for gr1, gr2 in zip(g1, g2):
    gr_lst = [gr1, gr2]
    gr_lst.sort()

    if gr1 not in grp_cmp_dict:
      grp_cmp_dict[gr1] = [gr2, f"{gr_lst[0]}/{gr_lst[1]}"]
    if gr2 not in grp_cmp_dict:
      grp_cmp_dict[gr2] = [gr1, f"{gr_lst[0]}/{gr_lst[1]}"]

  print("---GRP PAIR KEY---")
  print(grp_cmp_dict)

  print("---PERMITTED PAIRS---")
  permitted_pairs = []
  for gr1, gr2 in zip(g1, g2):
    gr_lst = [gr1, gr2]
    gr_lst.sort()

    permitted_pairs.append(f"{gr_lst[0]}/{gr_lst[1]}")

    if gr1 not in grp_cmp_dict:
      grp_cmp_dict[gr1] = [gr2, f"{gr_lst[0]}/{gr_lst[1]}"]
    if gr2 not in grp_cmp_dict:
      grp_cmp_dict[gr2] = [gr1, f"{gr_lst[0]}/{gr_lst[1]}"]

  print(f"Permitted pairs: {permitted_pairs}")

  att_grp_mat = []
  for grp in grp_terms[0:]: #list(bias_spec['social_groups'].items())[0][1]:
    for att in att_terms:
      sub_df = test_sentences_df.query("att_term==@att and grp_term1==@grp") # or grp_term2==@grp1
      grp_att_pair = sub_df.groupby(['gr_cmp_key','att_term'])['att_term'].agg(["count"]).reset_index().values.tolist()

      isAdded = False
      if len(grp_att_pair)>0:
        if len(grp_att_pair) == 1:
          att_grp_mat.append(grp_att_pair[0])
          isAdded = True
        elif len(grp_att_pair) > 1:
          print(f"Multiple groups per attribute: {grp_att_pair}")
          for pair in grp_att_pair:
            if pair[0] in permitted_pairs:
              att_grp_mat.append(pair)
              isAdded = True

      # Not added pair
      if isAdded == False:
        att_grp_mat.append([grp_cmp_dict[grp][1], att, 0])

  print("---ATT GRP MATRIX---")
  print(att_grp_mat)

  att_grp_df = pd.DataFrame(att_grp_mat, columns=['grp_pair','att_term','count'])
  print(att_grp_df.head(2))

  agg_att_grp_df = att_grp_df.groupby(["grp_pair","att_term"])["count"].agg(["sum"]).reset_index()
  print(agg_att_grp_df.columns)

  def missingCounts(row, max):
    n_gap = np.max([0, max - row['sum']])
    return n_gap
  
  b_name = rq_mgr.getBiasName(g1, g2, a1, a2)

  max_count = agg_att_grp_df.max()['sum']
  agg_att_grp_df['n_gap'] = agg_att_grp_df.progress_apply(missingCounts, axis=1, max=2)
  #print(agg_att_grp_df.head(2))

  miss_att_grp_lst = agg_att_grp_df[agg_att_grp_df['n_gap'] > 0][['grp_pair','att_term','n_gap']].values.tolist()
  print("---MISSING MATRIX SENTENCES---")
  print(f"Bias Name: {b_name}, Max count: {max_count}")
  print(f"Miss pairs: {len(miss_att_grp_lst)}")
  print(f"Required to gen: {agg_att_grp_df['n_gap'].sum()}")
  print(miss_att_grp_lst[0:10])

def genMissingAttribBiasSpec(bias_spec, test_sentences_df):
  g1, g2, a1, a2 = get_words(bias_spec)

  attributes_g1 = a1 #list(set(a1 + [a.replace(' ','-') for a in a1])) #bias_spec['attributes']['attribute 1']
  attributes_g2 = a2 #list(set(a2 + [a.replace(' ','-') for a in a2])) #bias_spec['attributes']['attribute 2']

  grp1_att_dict = {}
  grp2_att_dict = {}
  
  max_att_count = 0
  for att in attributes_g1+attributes_g2: #test_sentences_df['Attribute term'].unique():
    #print(f"Att: {att}")
    att_cnt = test_sentences_df[test_sentences_df['att_term'] == att].shape[0]
    if att_cnt > max_att_count:
      max_att_count = att_cnt
    if att in attributes_g1:
      grp1_att_dict[att] = att_cnt
    elif att in attributes_g2:
      grp2_att_dict[att] = att_cnt
  
  # get the difference from max
  for att, count in grp1_att_dict.items():
    grp1_att_dict[att] = max_att_count - count 

  # get the difference from max
  for att, count in grp2_att_dict.items():
    grp2_att_dict[att] = max_att_count - count 

  return (grp1_att_dict, grp2_att_dict)

# Adding period to end sentence
def add_period(template):
  if template[-1] not in string.punctuation:
    template += "."
  return template

# Convert generated sentence to template - not caring about referential terms
def sentence_to_template(sentence, grp_term, mask_token):  
    template = add_period(sentence.strip("\""))

    fnd_grp = list(re.finditer(f"(^|[ ]+){grp_term.lower()}[ .,!]+", template.lower()))
    while len(fnd_grp) > 0:
      idx1 = fnd_grp[0].span(0)[0]
      if template[idx1] == " ":
        idx1+=1
      idx2 = fnd_grp[0].span(0)[1]-1
      template = template[0:idx1]+mask_token+template[idx2:]

      fnd_grp = list(re.finditer(f"(^|[ ]+){grp_term.lower()}[ .,!]+", template.lower()))

    return template

# Convert generated sentence to template - not caring about referential terms
def sentence_to_template_df(row):  
    sentence = row['Sentence']
    grp_term_1 = row['Group term 1']
    grp_term_2 = row['Group term 2']
    grp_term = grp_term_1 if grp_term_1.lower() in sentence.lower() else grp_term_2
    #template = add_period(sentence.strip("\""))

    #fnd_grp = list(re.finditer(f"(^|[ ]+){grp_term.lower()}[ .,!]+", template.lower()))
    #while len(fnd_grp) > 0:
    #  idx1 = fnd_grp[0].span(0)[0]
    #  if template[idx1] == " ":
    #    idx1+=1
    #  idx2 = fnd_grp[0].span(0)[1]-1
    #  template = template[0:idx1]+f"[T]"+template[idx2:]

    #  fnd_grp = list(re.finditer(f"(^|[ ]+){grp_term.lower()}[ .,!]+", template.lower()))

    template = sentence_to_template(sentence, grp_term, mask_token="[T]")
    
    return template

# Detect differences between alternative sentences and construct a template
def maskSentenceDifferences(sentence, rewrite, target_words, att_term):
  if '-' in att_term:
    sentence = sentence.replace(att_term.replace("-",""), att_term.replace("-"," "))
    #print(sentence)

  if ' ' in att_term:
    no_space_att = att_term.replace(" ", "")
    if no_space_att in rewrite:
      rewrite = rewrite.replace(no_space_att, att_term)

  # identify group term in both sentences
  sentence = sentence_to_template(sentence, target_words[0], "*")
  rewrite = sentence_to_template(rewrite, target_words[1], "*")
  #print(f'S1: {sentence}')
  #print(f'R1: {rewrite}')

  # add variation without '-'
  target_words.extend([t.replace('-','') for t in target_words])
  target_words = [t.lower() for t in target_words]

  s_words = nltk.word_tokenize(sentence)
  r_words = nltk.word_tokenize(rewrite)

  template = ""
  template_tokens = []
  add_refs = []

  for s, r in zip(s_words, r_words):
    if s != r:
      if s.lower() in target_words:
        template += "[T]"
        template_tokens.append("[T]")
      else:
        template += "[R]"
        template_tokens.append("[R]")
        
        l_mask = s.lower()
        r_mask = r.lower()
        if l_mask == "*" and r_mask != "*":
          l_mask = target_words[0]
        elif l_mask != "*" and r_mask == "*":
          r_mask = target_words[1]

        add_refs.append((l_mask, r_mask))

        #add_refs.append((s.lower(),r.lower()))
    elif s in string.punctuation:
      template += s.strip(" ")
      template_tokens.append(s)
    else:
      template += s
      template_tokens.append(s)

    template += " "

  return TreebankWordDetokenizer().detokenize(template_tokens).replace("*","[T]"), add_refs

# turn generated sentence into a test templates - reference term aware version
def ref_terms_sentence_to_template(row):
  sentence = row['Sentence']
  alt_sentence = row['Alternative Sentence']
  grp_term_1 = row['Group term 1']
  grp_term_2 = row['Group term 2']
  att_term = row['Attribute term']

  # find out which social group the generator term belongs to
  grp_term_pair = []

  if grp_term_1.lower() in sentence.lower():
    grp_term_pair = [grp_term_1, grp_term_2]
  elif grp_term_2.lower() in sentence.lower():
    grp_term_pair = [grp_term_2, grp_term_1]
  else:
    print(f"ERROR: missing either group term: [{grp_term_1},{grp_term_2}] in sentence: {sentence}")

  template, grp_refs = maskSentenceDifferences(sentence, alt_sentence, grp_term_pair, att_term)
  return pd.Series([template, grp_refs])


# make sure to use equal number of keywords for opposing attribute and social group specifications
def make_lengths_equal(t1, t2, a1, a2):
  if len(t1) > len(t2):
    t1 = random.sample(t1, len(t2))
  elif len(t1) < len(t2):
    t2 = random.sample(t2, len(t1))

  if len(a1) > len(a2):
    a1 = random.sample(a1, len(a2))
  elif len(a1) < len(a2):
    a2 = random.sample(a2, len(a1))

  return (t1, t2, a1, a2)

def get_words(bias):
    t1 = list(bias['social_groups'].items())[0][1]
    t2 = list(bias['social_groups'].items())[1][1]
    a1 = list(bias['attributes'].items())[0][1]
    a2 = list(bias['attributes'].items())[1][1]

    (t1, t2, a1, a2) = make_lengths_equal(t1, t2, a1, a2)

    return (t1, t2, a1, a2)

def get_group_term_map(bias):
  grp2term = {}
  for group, terms in bias['social_groups'].items():
    grp2term[group] = terms

  return grp2term

def get_att_term_map(bias):
  att2term = {}
  for att, terms in bias['attributes'].items():
    att2term[att] = terms

  return att2term

# check if term within term list
def checkinList(term, term_list, verbose=False):
  for cterm in term_list:
    #print(f"Comparing <{cterm}><{term}>")
    if cterm == term or cterm.replace(" ","-") == term.replace(' ','-'):
      return True
  return False

# Convert Test sentences to stereotype/anti-stereotype pairs
def convert2pairsFromDF(bias_spec, test_sentences_df, verbose=False):
  pairs = []
  headers = ['sentence','alt_sentence','att_term','template','grp_term_1','grp_term_2','label_1','label_2','grp_refs']

  # get group to words mapping
  XY_2_xy = get_group_term_map(bias_spec)
  if verbose == True:
    print(f"grp2term: {XY_2_xy}")
  AB_2_ab = get_att_term_map(bias_spec)
  if verbose == True:
    print(f"att2term: {AB_2_ab}")

  ri = 0
  for idx, row in test_sentences_df.iterrows():
    sentence = row['Sentence']
    alt_sentence = row['Alternative Sentence']
    grp_term_1 = row['Group term 1']
    grp_term_2 = row['Group term 2']
    grp_refs = row['grp_refs']
    att_term = row['Attribute term']
    template = row['Template']

    direction = []
    if checkinList(att_term, list(AB_2_ab.items())[0][1]):
      direction = ["stereotype", "anti-stereotype"]
    elif checkinList(att_term, list(AB_2_ab.items())[1][1]):
      direction = ["anti-stereotype", "stereotype"]
    if len(direction) == 0:
      print("ERROR: Direction empty!")
      checkinList(att_term, list(AB_2_ab.items())[0][1], verbose=True)
      checkinList(att_term, list(AB_2_ab.items())[1][1], verbose=True)

    grp_term_idx = -1
    grp_term_pair = [grp_term_1, grp_term_2]
    sentence_pair = [sentence, alt_sentence]
    if grp_term_1 in list(XY_2_xy.items())[0][1]:
      if grp_term_2 not in list(XY_2_xy.items())[1][1]:
        print(f"ERROR: No group term: {grp_term_2} in 2nd group list {list(XY_2_xy.items())[1][1]}")

    elif grp_term_1 in list(XY_2_xy.items())[1][1]:
      if grp_term_2 not in list(XY_2_xy.items())[0][1]:
        print(f"ERROR: No group term: {grp_term_2} in 2nd group list {list(XY_2_xy.items())[0][1]}")
      direction.reverse()
      #sentence_pair.reverse()

    if verbose==True:
      print(f"Direction: {direction}")
      print(f"Grp pair: {grp_term_pair}")
      print(f"Sentences: {sentence_pair}")

    #print(f"GRP term pair: {grp_term_pair}")
    #print(f"Direction: {direction}")
    if len(grp_term_pair) == 0:
      print(f"ERROR: Missing for sentence: {template} -> {grp_term_1}, {sentence}")

    pairs.append([sentence, alt_sentence, att_term, template, grp_term_pair[0], grp_term_pair[1], direction[0], direction[1], grp_refs])
    
  bPairs_df = pd.DataFrame(pairs, columns=headers)
  #bPairs_df = bPairs_df.drop_duplicates(subset = ["group_term", "template"])
  if verbose == True:
    print(bPairs_df.head(1))

  return bPairs_df

# Convert Test sentences to stereotype/anti-stereotyped pairs
def convert2pairs(bias_spec, test_sentences_df):
    pairs = []
    headers = ['sentence','alt_sentence','att_term','template','grp_term_1','grp_term_2','label_1','label_2','grp_refs']

    # get group to words mapping
    XY_2_xy = get_group_term_map(bias_spec)
    print(f"grp2term: {XY_2_xy}")
    AB_2_ab = get_att_term_map(bias_spec)
    print(f"att2term: {AB_2_ab}")

    ri = 0
    for idx, row in test_sentences_df.iterrows():
        sentence = row['Sentence']
        alt_sentence = row['Alternative Sentence']
        grp_term_1 = row['Group term 1']
        grp_term_2 = row['Group term 2']
        grp_refs = row['grp_refs']
        grp_term = grp_term_1# if grp_term_1 in sentence else grp_term_2

        direction = []
        if checkinList(row['Attribute term'], list(AB_2_ab.items())[0][1]):
          direction = ["stereotype", "anti-stereotype"]
        elif checkinList(row['Attribute term'], list(AB_2_ab.items())[1][1]):
          direction = ["anti-stereotype", "stereotype"]
        if len(direction) == 0:
          print("Direction empty!")
          checkinList(row['Attribute term'], list(AB_2_ab.items())[0][1], verbose=True)
          checkinList(row['Attribute term'], list(AB_2_ab.items())[1][1], verbose=True)
          raise gr.Error(BIAS_SENTENCES_MISMATCH_ERROR)

        grp_term_idx = -1
        grp_term_pair = []
        sentence_pair = [sentence, alt_sentence]
        if grp_term in list(XY_2_xy.items())[0][1]:
            grp_term_idx = list(XY_2_xy.items())[0][1].index(grp_term)
            try:
              grp_term_pair = [grp_term, list(XY_2_xy.items())[1][1][grp_term_idx]]
            except IndexError:
              print(f"Index {grp_term_idx} not found in list {list(XY_2_xy.items())[1][1]}, choosing random...")
              grp_term_idx = random.randint(0, len(list(XY_2_xy.items())[1][1])-1)
              print(f"New group term idx: {grp_term_idx} for list {list(XY_2_xy.items())[1][1]}")
              grp_term_pair = [grp_term, list(XY_2_xy.items())[1][1][grp_term_idx]]

        elif grp_term in list(XY_2_xy.items())[1][1]:
            grp_term_idx = list(XY_2_xy.items())[1][1].index(grp_term)
            try:
              grp_term_pair = [grp_term, list(XY_2_xy.items())[0][1][grp_term_idx]]
            except IndexError:
              print(f"Index {grp_term_idx} not found in list {list(XY_2_xy.items())[0][1]}, choosing random...")
              grp_term_idx = random.randint(0, len(list(XY_2_xy.items())[0][1])-1)
              print(f"New group term idx: {grp_term_idx} for list {list(XY_2_xy.items())[0][1]}")
              grp_term_pair = [grp_term, list(XY_2_xy.items())[0][1][grp_term_idx]]
            
            direction.reverse()
            #sentence_pair.reverse()

        #print(f"GRP term pair: {grp_term_pair}")
        #print(f"Direction: {direction}")
        if len(grp_term_pair) == 0:
          print(f"Missing for sentence: {row['Template']} -> {grp_term}, {sentence}")

        pairs.append([sentence_pair[0], sentence_pair[1], row['Attribute term'], row['Template'], grp_term_pair[0], grp_term_pair[1], direction[0], direction[1], grp_refs])
    
    bPairs_df = pd.DataFrame(pairs, columns=headers)
    #bPairs_df = bPairs_df.drop_duplicates(subset = ["group_term", "template"])
    print(bPairs_df.head(1))

    return bPairs_df

# get multiple indices if target term broken up into multiple tokens
def get_mask_idx(ids, mask_token_id):
  """num_tokens: number of tokens the target word is broken into"""
  ids = torch.Tensor.tolist(ids)[0]
  return ids.index(mask_token_id)

# Get probability for 2 variants of a template using target terms
def getBERTProb(model, tokenizer, template, targets, device, verbose=False):
  prior_token_ids = tokenizer.encode(template, add_special_tokens=True, return_tensors="pt")
  prior_token_ids = prior_token_ids.to(device)
  prior_logits = model(prior_token_ids)

  target_probs = []
  sentences = []
  for target in targets:
    targ_id = tokenizer.encode(target, add_special_tokens=False)
    if verbose:
      print("Targ ids:", targ_id)

    logits = prior_logits[0][0][get_mask_idx(prior_token_ids, tokenizer.mask_token_id)][targ_id]
    if verbose:
      print("Logits:", logits)

    target_probs.append(np.mean(logits.cpu().numpy()))
    sentences.append(template.replace("[T]", target))
  
  if verbose:
    print("Target probs:", target_probs)

  return target_probs, sentences

# Get probability for 2 variants of a template using target terms
def getGPT2Prob(model, tokenizer, template, targets, device, verbose=False):
  target_probs = []
  sentences = []
  for target in targets:
    sentence = template.replace("[T]", target)
    if verbose:
      print(f"Sentence with target {target}: {sentence}")

    tensor_input = tokenizer.encode(sentence, return_tensors="pt").to(device)
    outputs = model(tensor_input, labels=tensor_input)
    target_probs.append(outputs.loss.item())
    sentences.append(sentence)

  return [max(target_probs)-l for l in target_probs], sentences

# Get probability for 2 variants of a sentence
def getGPT2ProbPairs(model, tokenizer, sentences, targets, device, verbose=False):
  target_probs = []
  tested_sentences = []

  for ti, (sentence, target) in enumerate(zip(sentences, targets)):
    #trg_input = tokenizer.encode(target, return_tensors="pt").to(device)
    #outputs = model(trg_input, labels=trg_input)
    #trg_prob = outputs.loss.item()

    # construct target specific template
    tensor_input = tokenizer.encode(sentence, return_tensors="pt").to(device)
    outputs = model(tensor_input, labels=tensor_input)
    target_probs.append(outputs.loss.item())#/(1-trg_prob))
    tested_sentences.append(sentence)

  return [max(target_probs)-l for l in target_probs], sentences

def getBERTProbPairs(model, tokenizer, sentences, targets, device, verbose=False):
  target_probs = []
  tested_sentences = []

  for ti, (sentence, target) in enumerate(zip(sentences, targets)):
    #sentence = sentences[0] if target.lower() in sentences[0].lower() else sentences[1]

    template = sentence_to_template(sentence, target, mask_token="[MASK]")
    if verbose == True:
      print(f"Template: {template}")

    # get encoded version of 
    prior_token_ids = tokenizer.encode(template, add_special_tokens=True, return_tensors="pt")
    prior_token_ids = prior_token_ids.to(device)
    prior_logits = model(prior_token_ids)

    targ_id = tokenizer.encode(target, add_special_tokens=False)

    logits = prior_logits[0][0][get_mask_idx(prior_token_ids, tokenizer.mask_token_id)][targ_id]

    target_probs.append(np.mean(logits.cpu().numpy()))
    tested_sentences.append(template.replace("[MASK]", target))

  return target_probs, tested_sentences

# bias test on one row of a dataframe -> row is one sentence template with target terms
def checkBiasPairs(row, biasProbFunc, model, tokenizer, device, progress, df_len):
  grp_terms = [row['grp_term_1'], row['grp_term_2']]
  labels = [row['label_1'], row['label_2']]
  sentence_pair = [row['sentence'], row['alt_sentence']]
  
  if progress != None:
    progress(row.name/df_len, desc=f"{row['template']}")

  test_res = [0,1]
  random.shuffle(test_res) # fail-safe
  try:
    test_res, sentences = biasProbFunc(model, tokenizer, sentence_pair, grp_terms, device)
  except ValueError as err:
    print(f"Error testing sentence: {row['sentence']}, {row['alt_sentence']}, \
          grp_terms: {grp_terms}, err: {err}")
    for ti, (sentence, target) in enumerate(zip(sentence_pair, grp_terms)):
      template = sentence_to_template(sentence, target, mask_token="[MASK]")
      print(f"T {target} | {sentence} -> {template} ")
  
  top_term_idx = 0 if test_res[0]>test_res[1] else 1
  bottom_term_idx = 0 if test_res[1]>test_res[0] else 1

  # is stereotyped
  stereotyped = 1 if labels[top_term_idx] == "stereotype" else 0

  return pd.Series({"stereotyped": stereotyped, 
          "top_term": grp_terms[top_term_idx], 
          "bottom_term": grp_terms[bottom_term_idx],
          "top_logit": test_res[top_term_idx],
          "bottom_logit": test_res[bottom_term_idx]})

# Test function just for sanity check
def testModelProbability(model_name, model, tokenizer, device):
  if 'bert' in model_name:
    print(f"Testing on BERT family model: {model_name}")
    #print(getBERTProb(model, tokenizer, "[MASK] is a carpenter", ["man","woman"], device, verbose=True))
  elif 'gpt' in model_name:
    print(f"Testing on GPT-2 family model: {model_name}")
    #print(getGPT2Prob(model, tokenizer, "African American man was [MASK]", ["poor","rich"], device, verbose=True))
  elif 'llama' in model_name:
    print(f"Testing on LLAMA or FALCON family model: {model_name}")
    #print(getGPT2Prob(model, tokenizer, "African American man was [MASK]", ["poor","rich"], device, verbose=True))

# bias test on one row of a dataframe -> row is one sentence template with target terms
def checkBias(row, biasProbFunc, model, tokenizer, device, progress, df_len):
  grp_terms = [row['grp_term_1'], row['grp_term_2']]
  labels = [row['label_1'], row['label_2']]
  
  if progress != None:
    progress(row.name/df_len, desc=f"{row['template']}")

  test_res = [0,1]
  random.shuffle(test_res) # fail-safe
  try:
    test_res, sentences = biasProbFunc(model, tokenizer, row['template'].replace("[T]","[MASK]"), grp_terms, device)
  except ValueError as err:
    print(f"Error testing sentence: {row['template']}, grp_terms: {grp_terms}, err: {err}")
  
  top_term_idx = 0 if test_res[0]>test_res[1] else 1
  bottom_term_idx = 0 if test_res[1]>test_res[0] else 1

  # is stereotyped
  stereotyped = 1 if labels[top_term_idx] == "stereotype" else 0

  return pd.Series({"stereotyped": stereotyped, 
          "top_term": grp_terms[top_term_idx], 
          "bottom_term": grp_terms[bottom_term_idx],
          "top_logit": test_res[top_term_idx],
          "bottom_logit": test_res[bottom_term_idx]})
   
# Sampling attribute
def sampleAttribute(df, att, n_per_att):
  att_rows = df.query("group_term == @att")
  # copy-paste all gens - no bootstrap
  #grp_bal = att_rows
  
  grp_bal = pd.DataFrame()
  if att_rows.shape[0] >= n_per_att:
    grp_bal = att_rows.sample(n_per_att)
  elif att_rows.shape[0] > 0 and att_rows.shape[0] < n_per_att:
    grp_bal = att_rows.sample(n_per_att, replace=True)

  return grp_bal

# Bootstrapping the results
def bootstrapBiasTest(bias_scores_df, bias_spec):
  bootstrap_df = pd.DataFrame()
  g1, g2, a1, a2 = get_words(bias_spec)

  # bootstrapping parameters
  n_repeats = 30
  n_per_attrbute = 2

  # For bootstraping repeats
  for rep_i in range(n_repeats):
    fold_df = pd.DataFrame()

    # attribute 1
    for an, att1 in enumerate(a1):
      grp_bal = sampleAttribute(bias_scores_df, att1, n_per_attrbute)
      if grp_bal.shape[0] == 0:
        grp_bal = sampleAttribute(bias_scores_df, att1.replace(" ","-"), n_per_attrbute)

      if grp_bal.shape[0] > 0:
        fold_df = pd.concat([fold_df, grp_bal.copy()], ignore_index=True)

    # attribute 2
    for an, att2 in enumerate(a2):
      grp_bal = sampleAttribute(bias_scores_df, att2, n_per_attrbute)
      if grp_bal.shape[0] == 0:
        grp_bal = sampleAttribute(bias_scores_df, att2.replace(" ","-"), n_per_attrbute)

      if grp_bal.shape[0] > 0:
        fold_df = pd.concat([fold_df, grp_bal.copy()], ignore_index=True)

  #if fold_df.shape[0]>0:
  #  unnorm_model, norm_model, perBias_df = biasStatsFold(test_df)
  #  print(f"Gen: {gen_model}, Test: {test_model} [{rep_i}], df-size: {test_df.shape[0]}, Model bias: {norm_model:0.4f}")
  #  perBias_df['test_model'] = test_model
  #  perBias_df['gen_model'] = gen_model

  #  bootstrap_df = pd.concat([bootstrap_df, perBias_df], ignore_index=True)


# testing bias on datafram with test sentence pairs
def testBiasOnPairs(gen_pairs_df, bias_spec, model_name, model, tokenizer, device, progress=None):
    print(f"Testing {model_name} bias on generated pairs: {gen_pairs_df.shape}")

    testUsingPairs = True
    biasTestFunc = checkBiasPairs if testUsingPairs==True else checkBias
    modelBERTTestFunc = getBERTProbPairs if testUsingPairs==True else getBERTProb
    modelGPT2TestFunc = getGPT2ProbPairs if testUsingPairs==True else getGPT2Prob

    print(f"Bias Test Func: {str(biasTestFunc)}")
    print(f"BERT Test Func: {str(modelBERTTestFunc)}")
    print(f"GPT2 Test Func: {str(modelGPT2TestFunc)}")
    
    if 'bert' in model_name.lower():
      print(f"Testing on BERT family model: {model_name}")
      gen_pairs_df[['stereotyped','top_term','bottom_term','top_logit','bottom_logit']] = gen_pairs_df.progress_apply(
            biasTestFunc, biasProbFunc=modelBERTTestFunc, model=model, tokenizer=tokenizer, device=device, progress=progress, df_len=gen_pairs_df.shape[0], axis=1)

    elif 'gpt' in model_name.lower():
      print(f"Testing on GPT-2 family model: {model_name}")
      gen_pairs_df[['stereotyped','top_term','bottom_term','top_logit','bottom_logit']] = gen_pairs_df.progress_apply(
            biasTestFunc, biasProbFunc=modelGPT2TestFunc, model=model, tokenizer=tokenizer, device=device, progress=progress, df_len=gen_pairs_df.shape[0], axis=1)

    elif 'llama' in model_name.lower() or 'falcon' in model_name.lower():
      print(f"Testing on LLAMA or FALCON family model: {model_name}")
      gen_pairs_df[['stereotyped','top_term','bottom_term','top_logit','bottom_logit']] = gen_pairs_df.progress_apply(
            biasTestFunc, biasProbFunc=modelGPT2TestFunc, model=model, tokenizer=tokenizer, device=device, progress=progress, df_len=gen_pairs_df.shape[0], axis=1)

    # Bootstrap
    print(f"BIAS ON PAIRS: {gen_pairs_df}")
    
    #bootstrapBiasTest(gen_pairs_df, bias_spec)


    grp_df = gen_pairs_df.groupby(['att_term'])['stereotyped'].mean()

    # turn the dataframe into dictionary with per model and per bias scores
    bias_stats_dict = {}
    bias_stats_dict['tested_model'] = model_name
    bias_stats_dict['num_templates'] = gen_pairs_df.shape[0]
    bias_stats_dict['model_bias'] = round(grp_df.mean(),4)
    bias_stats_dict['per_bias'] = {}
    bias_stats_dict['per_attribute'] = {}
    bias_stats_dict['per_template'] = []

    # for individual bias
    bias_per_term = gen_pairs_df.groupby(["att_term"])['stereotyped'].mean()
    bias_stats_dict['per_bias'] = round(bias_per_term.mean(),4) #mean normalized by terms
    print(f"Bias: {bias_stats_dict['per_bias'] }")

    # per attribute
    print("Bias score per attribute")
    for attr, bias_score in grp_df.items():
      print(f"Attribute: {attr} -> {bias_score}")
      bias_stats_dict['per_attribute'][attr] = bias_score

    # loop through all the templates (sentence pairs)
    for idx, template_test in gen_pairs_df.iterrows():  
      bias_stats_dict['per_template'].append({
        "template": template_test['template'],
        "groups": [template_test['grp_term_1'], template_test['grp_term_2']],
        "stereotyped": template_test['stereotyped'],
        #"discarded": True if template_test['discarded']==1 else False,
        "score_delta": template_test['top_logit'] - template_test['bottom_logit'],
        "stereotyped_version": template_test['top_term'] if template_test['label_1'] == "stereotype" else template_test['bottom_term'],
        "anti_stereotyped_version": template_test['top_term'] if template_test['label_1'] == "anti-stereotype" else template_test['bottom_term']
      })
    
    return grp_df, bias_stats_dict

def _test_startBiasTest(test_sentences_df, model_name):
    # 2. convert to templates
    test_sentences_df['Template'] = test_sentences_df.apply(sentence_to_template_df, axis=1)
    print(f"Data with template: {test_sentences_df}")

    # 3. convert to pairs
    test_pairs_df = convert2pairsFromDF(bias_spec, test_sentences_df)
    print(f"Test pairs: {test_pairs_df.head(3)}")

    # 4. get the per sentence bias scores
    print(f"Test model name: {model_name}")
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print(f"Device: {device}")
    tested_model, tested_tokenizer = _getModelSafe(model_name, device)
    #print(f"Mask token id: {tested_toknizer.mask_token_id}")
    if tested_tokenizer == None:
      print("Tokanizer is empty!!!")
    if tested_model == None:
      print("Model is empty!!!")
    
    # sanity check bias test
    testModelProbability(model_name, tested_model, tested_tokenizer, device)

    test_score_df, bias_stats_dict = testBiasOnPairs(test_pairs_df, bias_spec, model_name, tested_model, tested_tokenizer, device)
    print(f"Test scores: {test_score_df.head(3)}")

    return test_score_df

def _constructInterpretationMsg(bias_spec, num_sentences, model_name, bias_stats_dict, per_attrib_bias, score_templates_df):
  grp1_terms, grp2_terms = bmgr.getSocialGroupTerms(bias_spec)
  att1_terms, att2_terms = bmgr.getAttributeTerms(bias_spec)
  total_att_terms = len(att1_terms) + len(att2_terms)

  interpret_msg = f"Test result on <b>{model_name}</b> using <b>{num_sentences}</b> sentences. "
  if num_sentences < total_att_terms or num_sentences < 20:
      interpret_msg += "We recommend generating more sentences to get more robust estimates! <br />"
  else:
      interpret_msg += "<br />"

  attrib_by_score = dict(sorted(per_attrib_bias.items(), key=lambda item: item[1], reverse=True))
  print(f"Attribs sorted: {attrib_by_score}")

  # get group to words mapping
  XY_2_xy = get_group_term_map(bias_spec)
  print(f"grp2term: {XY_2_xy}")
  AB_2_ab = get_att_term_map(bias_spec)
  print(f"att2term: {AB_2_ab}")

  grp1_terms = bias_spec['social_groups']['group 1']
  grp2_terms = bias_spec['social_groups']['group 2']
  
  sel_grp1 = None
  sel_grp2 = None
  att_dirs = {}
  for attrib in list(attrib_by_score.keys()):      
    att_label = None
    if checkinList(attrib, list(AB_2_ab.items())[0][1]):
      att_label = 0
    elif checkinList(attrib, list(AB_2_ab.items())[1][1]):
      att_label = 1
    else:
      print("Error!")

    att_dirs[attrib] = att_label

    print(f"Attrib: {attrib} -> {attrib_by_score[attrib]} -> {att_dirs[attrib]}")
    
    if sel_grp1 == None:
        if att_dirs[attrib] == 0:
          sel_grp1 = [attrib, attrib_by_score[attrib]]
    if sel_grp2 == None:
        if att_dirs[attrib] == 1:
          sel_grp2 = [attrib, attrib_by_score[attrib]]
    
  ns_att1 = score_templates_df.query(f"Attribute == '{sel_grp1[0]}'").shape[0]
  #<b>{ns_att1}</b>
  grp1_str = ', '.join([f'<b>\"{t}\"</b>' for t in grp1_terms[0:2]])
  att1_msg = f"For the sentences including <b>\"{sel_grp1[0]}\"</b> the terms from Social Group 1 such as {grp1_str},... are more probable {sel_grp1[1]*100:2.0f}% of the time. "
  print(att1_msg)

  ns_att2 = score_templates_df.query(f"Attribute == '{sel_grp2[0]}'").shape[0]
  #<b>{ns_att2}</b>
  grp2_str = ', '.join([f'<b>\"{t}\"</b>' for t in grp2_terms[0:2]])
  att2_msg = f"For the sentences including <b>\"{sel_grp2[0]}\"</b> the terms from Social Group 2 such as {grp2_str},... are more probable {sel_grp2[1]*100:2.0f}% of the time. "
  print(att2_msg)

  interpret_msg += f"<b>Interpretation:</b> Model chooses stereotyped version of the sentence {bias_stats_dict['model_bias']*100:2.0f}% of time. "
  #interpret_msg += f"It suggests that for the sentences including \"{list(per_attrib_bias.keys())[0]}\" the social group terms \"{bias_spec['social_groups']['group 1'][0]}\", ... are more probable {list(per_attrib_bias.values())[0]*100:2.0f}% of the time. "
  interpret_msg += "<br />"
  interpret_msg += "<div style=\"margin-top: 3px; margin-left: 3px\"><b>◼ </b>" + att1_msg + "<br /></div>"
  interpret_msg += "<div style=\"margin-top: 3px; margin-left: 3px; margin-bottom: 3px\"><b>◼ </b>" + att2_msg + "<br /></div>"
  interpret_msg += "Please examine the exact test sentences used below."
  interpret_msg += "<br />More details about Stereotype Score metric: <a href='https://arxiv.org/abs/2004.09456' target='_blank'>Nadeem et al. 2020<a>"

  return interpret_msg
  
  
if __name__ == '__main__':
    print("Testing bias manager...")

    bias_spec = {
        "social_groups": {
            "group 1": ["brother", "father"], 
            "group 2": ["sister", "mother"],
        },
        "attributes": {
            "attribute 1": ["science", "technology"], 
            "attribute 2": ["poetry", "art"]
        }
    }

    sentence_list = rq_mgr._getSavedSentences(bias_spec)
    sentence_df = pd.DataFrame(sentence_list, columns=["Test sentence","Group term","Attribute term"])
    print(sentence_df)

    _test_startBiasTest(sentence_df, 'bert-base-uncased')