File size: 36,961 Bytes
e4d8df5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 |
import os
import six
import sys
import librosa
import tempfile
import platform
import subprocess
import numpy as np
import soundfile as sf
from scipy.signal import correlate, hilbert
sys.path.append(os.getcwd())
from main.configs.config import Config
translations = Config().translations
OPERATING_SYSTEM = platform.system()
SYSTEM_ARCH = platform.platform()
SYSTEM_PROC = platform.processor()
ARM = "arm"
AUTO_PHASE = "Automatic"
POSITIVE_PHASE = "Positive Phase"
NEGATIVE_PHASE = "Negative Phase"
NONE_P = ("None",)
LOW_P = ("Shifts: Low",)
MED_P = ("Shifts: Medium",)
HIGH_P = ("Shifts: High",)
VHIGH_P = "Shifts: Very High"
MAXIMUM_P = "Shifts: Maximum"
BASE_PATH_RUB = sys._MEIPASS if getattr(sys, 'frozen', False) else os.path.dirname(os.path.abspath(__file__))
DEVNULL = open(os.devnull, 'w') if six.PY2 else subprocess.DEVNULL
MAX_SPEC = "Max Spec"
MIN_SPEC = "Min Spec"
LIN_ENSE = "Linear Ensemble"
MAX_WAV = MAX_SPEC
MIN_WAV = MIN_SPEC
AVERAGE = "Average"
progress_value, last_update_time = 0, 0
wav_resolution = "sinc_fastest"
wav_resolution_float_resampling = wav_resolution
def crop_center(h1, h2):
h1_shape = h1.size()
h2_shape = h2.size()
if h1_shape[3] == h2_shape[3]: return h1
elif h1_shape[3] < h2_shape[3]: raise ValueError("h1_shape[3] > h2_shape[3]")
s_time = (h1_shape[3] - h2_shape[3]) // 2
h1 = h1[:, :, :, s_time:s_time + h2_shape[3]]
return h1
def preprocess(X_spec):
return np.abs(X_spec), np.angle(X_spec)
def make_padding(width, cropsize, offset):
roi_size = cropsize - offset * 2
if roi_size == 0: roi_size = cropsize
return offset, roi_size - (width % roi_size) + offset, roi_size
def normalize(wave, max_peak=1.0):
maxv = np.abs(wave).max()
if maxv > max_peak: wave *= max_peak / maxv
return wave
def auto_transpose(audio_array):
if audio_array.shape[1] == 2: return audio_array.T
return audio_array
def write_array_to_mem(audio_data, subtype):
if isinstance(audio_data, np.ndarray):
import io
audio_buffer = io.BytesIO()
sf.write(audio_buffer, audio_data, 44100, subtype=subtype, format="WAV")
audio_buffer.seek(0)
return audio_buffer
else: return audio_data
def spectrogram_to_image(spec, mode="magnitude"):
if mode == "magnitude": y = np.log10((np.abs(spec) if np.iscomplexobj(spec) else spec)**2 + 1e-8)
elif mode == "phase": y = np.angle(spec) if np.iscomplexobj(spec) else spec
y -= y.min()
y *= 255 / y.max()
img = np.uint8(y)
if y.ndim == 3:
img = img.transpose(1, 2, 0)
img = np.concatenate([np.max(img, axis=2, keepdims=True), img], axis=2)
return img
def reduce_vocal_aggressively(X, y, softmask):
y_mag_tmp = np.abs(y)
v_mag_tmp = np.abs(X - y)
return np.clip(y_mag_tmp - v_mag_tmp * (v_mag_tmp > y_mag_tmp) * softmask, 0, np.inf) * np.exp(1.0j * np.angle(y))
def merge_artifacts(y_mask, thres=0.01, min_range=64, fade_size=32):
mask = y_mask
try:
if min_range < fade_size * 2: raise ValueError("min_range >= fade_size * 2")
idx = np.where(y_mask.min(axis=(0, 1)) > thres)[0]
start_idx = np.insert(idx[np.where(np.diff(idx) != 1)[0] + 1], 0, idx[0])
end_idx = np.append(idx[np.where(np.diff(idx) != 1)[0]], idx[-1])
artifact_idx = np.where(end_idx - start_idx > min_range)[0]
weight = np.zeros_like(y_mask)
if len(artifact_idx) > 0:
start_idx = start_idx[artifact_idx]
end_idx = end_idx[artifact_idx]
old_e = None
for s, e in zip(start_idx, end_idx):
if old_e is not None and s - old_e < fade_size: s = old_e - fade_size * 2
if s != 0: weight[:, :, s : s + fade_size] = np.linspace(0, 1, fade_size)
else: s -= fade_size
if e != y_mask.shape[2]: weight[:, :, e - fade_size : e] = np.linspace(1, 0, fade_size)
else: e += fade_size
weight[:, :, s + fade_size : e - fade_size] = 1
old_e = e
v_mask = 1 - y_mask
y_mask += weight * v_mask
mask = y_mask
except Exception as e:
import traceback
print(translations["not_success"], f'{type(e).__name__}: "{e}"\n{traceback.format_exc()}"')
return mask
def align_wave_head_and_tail(a, b):
l = min([a[0].size, b[0].size])
return a[:l, :l], b[:l, :l]
def convert_channels(spec, mp, band):
cc = mp.param["band"][band].get("convert_channels")
if "mid_side_c" == cc:
spec_left = np.add(spec[0], spec[1] * 0.25)
spec_right = np.subtract(spec[1], spec[0] * 0.25)
elif "mid_side" == cc:
spec_left = np.add(spec[0], spec[1]) / 2
spec_right = np.subtract(spec[0], spec[1])
elif "stereo_n" == cc:
spec_left = np.add(spec[0], spec[1] * 0.25) / 0.9375
spec_right = np.add(spec[1], spec[0] * 0.25) / 0.9375
else: return spec
return np.asfortranarray([spec_left, spec_right])
def combine_spectrograms(specs, mp, is_v51_model=False):
l = min([specs[i].shape[2] for i in specs])
spec_c = np.zeros(shape=(2, mp.param["bins"] + 1, l), dtype=np.complex64)
offset = 0
bands_n = len(mp.param["band"])
for d in range(1, bands_n + 1):
h = mp.param["band"][d]["crop_stop"] - mp.param["band"][d]["crop_start"]
spec_c[:, offset : offset + h, :l] = specs[d][:, mp.param["band"][d]["crop_start"] : mp.param["band"][d]["crop_stop"], :l]
offset += h
if offset > mp.param["bins"]: raise ValueError("offset > mp.param['bins']")
if mp.param["pre_filter_start"] > 0:
if is_v51_model: spec_c *= get_lp_filter_mask(spec_c.shape[1], mp.param["pre_filter_start"], mp.param["pre_filter_stop"])
else:
if bands_n == 1: spec_c = fft_lp_filter(spec_c, mp.param["pre_filter_start"], mp.param["pre_filter_stop"])
else:
import math
gp = 1
for b in range(mp.param["pre_filter_start"] + 1, mp.param["pre_filter_stop"]):
g = math.pow(10, -(b - mp.param["pre_filter_start"]) * (3.5 - gp) / 20.0)
gp = g
spec_c[:, b, :] *= g
return np.asfortranarray(spec_c)
def wave_to_spectrogram(wave, hop_length, n_fft, mp, band, is_v51_model=False):
if wave.ndim == 1: wave = np.asfortranarray([wave, wave])
if not is_v51_model:
if mp.param["reverse"]:
wave_left = np.flip(np.asfortranarray(wave[0]))
wave_right = np.flip(np.asfortranarray(wave[1]))
elif mp.param["mid_side"]:
wave_left = np.asfortranarray(np.add(wave[0], wave[1]) / 2)
wave_right = np.asfortranarray(np.subtract(wave[0], wave[1]))
elif mp.param["mid_side_b2"]:
wave_left = np.asfortranarray(np.add(wave[1], wave[0] * 0.5))
wave_right = np.asfortranarray(np.subtract(wave[0], wave[1] * 0.5))
else:
wave_left = np.asfortranarray(wave[0])
wave_right = np.asfortranarray(wave[1])
else:
wave_left = np.asfortranarray(wave[0])
wave_right = np.asfortranarray(wave[1])
spec_left = librosa.stft(wave_left, n_fft=n_fft, hop_length=hop_length)
spec_right = librosa.stft(wave_right, n_fft=n_fft, hop_length=hop_length)
spec = np.asfortranarray([spec_left, spec_right])
if is_v51_model: spec = convert_channels(spec, mp, band)
return spec
def spectrogram_to_wave(spec, hop_length=1024, mp={}, band=0, is_v51_model=True):
spec_left = np.asfortranarray(spec[0])
spec_right = np.asfortranarray(spec[1])
wave_left = librosa.istft(spec_left, hop_length=hop_length)
wave_right = librosa.istft(spec_right, hop_length=hop_length)
if is_v51_model:
cc = mp.param["band"][band].get("convert_channels")
if "mid_side_c" == cc: return np.asfortranarray([np.subtract(wave_left / 1.0625, wave_right / 4.25), np.add(wave_right / 1.0625, wave_left / 4.25)])
elif "mid_side" == cc: return np.asfortranarray([np.add(wave_left, wave_right / 2), np.subtract(wave_left, wave_right / 2)])
elif "stereo_n" == cc: return np.asfortranarray([np.subtract(wave_left, wave_right * 0.25), np.subtract(wave_right, wave_left * 0.25)])
else:
if mp.param["reverse"]: return np.asfortranarray([np.flip(wave_left), np.flip(wave_right)])
elif mp.param["mid_side"]: return np.asfortranarray([np.add(wave_left, wave_right / 2), np.subtract(wave_left, wave_right / 2)])
elif mp.param["mid_side_b2"]: return np.asfortranarray([np.add(wave_right / 1.25, 0.4 * wave_left), np.subtract(wave_left / 1.25, 0.4 * wave_right)])
return np.asfortranarray([wave_left, wave_right])
def cmb_spectrogram_to_wave(spec_m, mp, extra_bins_h=None, extra_bins=None, is_v51_model=False):
bands_n = len(mp.param["band"])
offset = 0
for d in range(1, bands_n + 1):
bp = mp.param["band"][d]
spec_s = np.zeros(shape=(2, bp["n_fft"] // 2 + 1, spec_m.shape[2]), dtype=complex)
h = bp["crop_stop"] - bp["crop_start"]
spec_s[:, bp["crop_start"] : bp["crop_stop"], :] = spec_m[:, offset : offset + h, :]
offset += h
if d == bands_n:
if extra_bins_h:
max_bin = bp["n_fft"] // 2
spec_s[:, max_bin - extra_bins_h : max_bin, :] = extra_bins[:, :extra_bins_h, :]
if bp["hpf_start"] > 0:
if is_v51_model: spec_s *= get_hp_filter_mask(spec_s.shape[1], bp["hpf_start"], bp["hpf_stop"] - 1)
else: spec_s = fft_hp_filter(spec_s, bp["hpf_start"], bp["hpf_stop"] - 1)
wave = spectrogram_to_wave(spec_s, bp["hl"], mp, d, is_v51_model) if bands_n == 1 else np.add(wave, spectrogram_to_wave(spec_s, bp["hl"], mp, d, is_v51_model))
else:
sr = mp.param["band"][d + 1]["sr"]
if d == 1:
if is_v51_model: spec_s *= get_lp_filter_mask(spec_s.shape[1], bp["lpf_start"], bp["lpf_stop"])
else: spec_s = fft_lp_filter(spec_s, bp["lpf_start"], bp["lpf_stop"])
try:
wave = librosa.resample(spectrogram_to_wave(spec_s, bp["hl"], mp, d, is_v51_model), orig_sr=bp["sr"], target_sr=sr, res_type=wav_resolution)
except ValueError as e:
print(f"{translations['resample_error']}: {e}")
print(f"{translations['shapes']} Spec_s: {spec_s.shape}, SR: {sr}, {translations['wav_resolution']}: {wav_resolution}")
else:
if is_v51_model:
spec_s *= get_hp_filter_mask(spec_s.shape[1], bp["hpf_start"], bp["hpf_stop"] - 1)
spec_s *= get_lp_filter_mask(spec_s.shape[1], bp["lpf_start"], bp["lpf_stop"])
else:
spec_s = fft_hp_filter(spec_s, bp["hpf_start"], bp["hpf_stop"] - 1)
spec_s = fft_lp_filter(spec_s, bp["lpf_start"], bp["lpf_stop"])
try:
wave = librosa.resample(np.add(wave, spectrogram_to_wave(spec_s, bp["hl"], mp, d, is_v51_model)), orig_sr=bp["sr"], target_sr=sr, res_type=wav_resolution)
except ValueError as e:
print(f"{translations['resample_error']}: {e}")
print(f"{translations['shapes']} Spec_s: {spec_s.shape}, SR: {sr}, {translations['wav_resolution']}: {wav_resolution}")
return wave
def get_lp_filter_mask(n_bins, bin_start, bin_stop):
return np.concatenate([np.ones((bin_start - 1, 1)), np.linspace(1, 0, bin_stop - bin_start + 1)[:, None], np.zeros((n_bins - bin_stop, 1))], axis=0)
def get_hp_filter_mask(n_bins, bin_start, bin_stop):
return np.concatenate([np.zeros((bin_stop + 1, 1)), np.linspace(0, 1, 1 + bin_start - bin_stop)[:, None], np.ones((n_bins - bin_start - 2, 1))], axis=0)
def fft_lp_filter(spec, bin_start, bin_stop):
g = 1.0
for b in range(bin_start, bin_stop):
g -= 1 / (bin_stop - bin_start)
spec[:, b, :] = g * spec[:, b, :]
spec[:, bin_stop:, :] *= 0
return spec
def fft_hp_filter(spec, bin_start, bin_stop):
g = 1.0
for b in range(bin_start, bin_stop, -1):
g -= 1 / (bin_start - bin_stop)
spec[:, b, :] = g * spec[:, b, :]
spec[:, 0 : bin_stop + 1, :] *= 0
return spec
def spectrogram_to_wave_old(spec, hop_length=1024):
if spec.ndim == 2: wave = librosa.istft(spec, hop_length=hop_length)
elif spec.ndim == 3: wave = np.asfortranarray([librosa.istft(np.asfortranarray(spec[0]), hop_length=hop_length), librosa.istft(np.asfortranarray(spec[1]), hop_length=hop_length)])
return wave
def wave_to_spectrogram_old(wave, hop_length, n_fft):
return np.asfortranarray([librosa.stft(np.asfortranarray(wave[0]), n_fft=n_fft, hop_length=hop_length), librosa.stft(np.asfortranarray(wave[1]), n_fft=n_fft, hop_length=hop_length)])
def mirroring(a, spec_m, input_high_end, mp):
if "mirroring" == a:
mirror = np.flip(np.abs(spec_m[:, mp.param["pre_filter_start"] - 10 - input_high_end.shape[1] : mp.param["pre_filter_start"] - 10, :]), 1) * np.exp(1.0j * np.angle(input_high_end))
return np.where(np.abs(input_high_end) <= np.abs(mirror), input_high_end, mirror)
if "mirroring2" == a:
mi = np.multiply(np.flip(np.abs(spec_m[:, mp.param["pre_filter_start"] - 10 - input_high_end.shape[1] : mp.param["pre_filter_start"] - 10, :]), 1), input_high_end * 1.7)
return np.where(np.abs(input_high_end) <= np.abs(mi), input_high_end, mi)
def adjust_aggr(mask, is_non_accom_stem, aggressiveness):
aggr = aggressiveness["value"] * 2
if aggr != 0:
if is_non_accom_stem:
aggr = 1 - aggr
if np.any(aggr > 10) or np.any(aggr < -10): print(f"{translations['warnings']}: {aggr}")
aggr = [aggr, aggr]
if aggressiveness["aggr_correction"] is not None:
aggr[0] += aggressiveness["aggr_correction"]["left"]
aggr[1] += aggressiveness["aggr_correction"]["right"]
for ch in range(2):
mask[ch, : aggressiveness["split_bin"]] = np.power(mask[ch, : aggressiveness["split_bin"]], 1 + aggr[ch] / 3)
mask[ch, aggressiveness["split_bin"] :] = np.power(mask[ch, aggressiveness["split_bin"] :], 1 + aggr[ch])
return mask
def stft(wave, nfft, hl):
return np.asfortranarray([librosa.stft(np.asfortranarray(wave[0]), n_fft=nfft, hop_length=hl), librosa.stft(np.asfortranarray(wave[1]), n_fft=nfft, hop_length=hl)])
def istft(spec, hl):
return np.asfortranarray([librosa.istft(np.asfortranarray(spec[0]), hop_length=hl), librosa.istft(np.asfortranarray(spec[1]), hop_length=hl)])
def spec_effects(wave, algorithm="Default", value=None):
if np.isnan(wave).any() or np.isinf(wave).any(): print(f"{translations['warnings_2']}: {wave.shape}")
spec = [stft(wave[0], 2048, 1024), stft(wave[1], 2048, 1024)]
if algorithm == "Min_Mag": wave = istft(np.where(np.abs(spec[1]) <= np.abs(spec[0]), spec[1], spec[0]), 1024)
elif algorithm == "Max_Mag": wave = istft(np.where(np.abs(spec[1]) >= np.abs(spec[0]), spec[1], spec[0]), 1024)
elif algorithm == "Default": wave = (wave[1] * value) + (wave[0] * (1 - value))
elif algorithm == "Invert_p":
X_mag, y_mag = np.abs(spec[0]), np.abs(spec[1])
wave = istft(spec[1] - np.where(X_mag >= y_mag, X_mag, y_mag) * np.exp(1.0j * np.angle(spec[0])), 1024)
return wave
def spectrogram_to_wave_no_mp(spec, n_fft=2048, hop_length=1024):
wave = librosa.istft(spec, n_fft=n_fft, hop_length=hop_length)
if wave.ndim == 1: wave = np.asfortranarray([wave, wave])
return wave
def wave_to_spectrogram_no_mp(wave):
spec = librosa.stft(wave, n_fft=2048, hop_length=1024)
if spec.ndim == 1: spec = np.asfortranarray([spec, spec])
return spec
def invert_audio(specs, invert_p=True):
ln = min([specs[0].shape[2], specs[1].shape[2]])
specs[0] = specs[0][:, :, :ln]
specs[1] = specs[1][:, :, :ln]
if invert_p:
X_mag, y_mag = np.abs(specs[0]), np.abs(specs[1])
v_spec = specs[1] - np.where(X_mag >= y_mag, X_mag, y_mag) * np.exp(1.0j * np.angle(specs[0]))
else:
specs[1] = reduce_vocal_aggressively(specs[0], specs[1], 0.2)
v_spec = specs[0] - specs[1]
return v_spec
def invert_stem(mixture, stem):
return -spectrogram_to_wave_no_mp(invert_audio([wave_to_spectrogram_no_mp(mixture), wave_to_spectrogram_no_mp(stem)])).T
def ensembling(a, inputs, is_wavs=False):
for i in range(1, len(inputs)):
if i == 1: input = inputs[0]
if is_wavs:
ln = min([input.shape[1], inputs[i].shape[1]])
input = input[:, :ln]
inputs[i] = inputs[i][:, :ln]
else:
ln = min([input.shape[2], inputs[i].shape[2]])
input = input[:, :, :ln]
inputs[i] = inputs[i][:, :, :ln]
if MIN_SPEC == a: input = np.where(np.abs(inputs[i]) <= np.abs(input), inputs[i], input)
if MAX_SPEC == a: input = np.where(np.abs(inputs[i]) >= np.abs(input), inputs[i], input)
return input
def ensemble_for_align(waves):
specs = []
for wav in waves:
spec = wave_to_spectrogram_no_mp(wav.T)
specs.append(spec)
wav_aligned = spectrogram_to_wave_no_mp(ensembling(MIN_SPEC, specs)).T
wav_aligned = match_array_shapes(wav_aligned, waves[1], is_swap=True)
return wav_aligned
def ensemble_inputs(audio_input, algorithm, is_normalization, wav_type_set, save_path, is_wave=False, is_array=False):
wavs_ = []
if algorithm == AVERAGE:
output = average_audio(audio_input)
samplerate = 44100
else:
specs = []
for i in range(len(audio_input)):
wave, samplerate = librosa.load(audio_input[i], mono=False, sr=44100)
wavs_.append(wave)
specs.append( wave if is_wave else wave_to_spectrogram_no_mp(wave))
wave_shapes = [w.shape[1] for w in wavs_]
target_shape = wavs_[wave_shapes.index(max(wave_shapes))]
output = ensembling(algorithm, specs, is_wavs=True) if is_wave else spectrogram_to_wave_no_mp(ensembling(algorithm, specs))
output = to_shape(output, target_shape.shape)
sf.write(save_path, normalize(output.T, is_normalization), samplerate, subtype=wav_type_set)
def to_shape(x, target_shape):
padding_list = []
for x_dim, target_dim in zip(x.shape, target_shape):
padding_list.append((0, target_dim - x_dim))
return np.pad(x, tuple(padding_list), mode="constant")
def to_shape_minimize(x, target_shape):
padding_list = []
for x_dim, target_dim in zip(x.shape, target_shape):
padding_list.append((0, target_dim - x_dim))
return np.pad(x, tuple(padding_list), mode="constant")
def detect_leading_silence(audio, sr, silence_threshold=0.007, frame_length=1024):
if len(audio.shape) == 2:
channel = np.argmax(np.sum(np.abs(audio), axis=1))
audio = audio[channel]
for i in range(0, len(audio), frame_length):
if np.max(np.abs(audio[i : i + frame_length])) > silence_threshold: return (i / sr) * 1000
return (len(audio) / sr) * 1000
def adjust_leading_silence(target_audio, reference_audio, silence_threshold=0.01, frame_length=1024):
def find_silence_end(audio):
if len(audio.shape) == 2:
channel = np.argmax(np.sum(np.abs(audio), axis=1))
audio_mono = audio[channel]
else: audio_mono = audio
for i in range(0, len(audio_mono), frame_length):
if np.max(np.abs(audio_mono[i : i + frame_length])) > silence_threshold: return i
return len(audio_mono)
ref_silence_end = find_silence_end(reference_audio)
target_silence_end = find_silence_end(target_audio)
silence_difference = ref_silence_end - target_silence_end
try:
silence_difference_p = ((ref_silence_end / 44100) * 1000) - ((target_silence_end / 44100) * 1000)
except Exception as e:
pass
if silence_difference > 0: return np.hstack((np.zeros((target_audio.shape[0], silence_difference))if len(target_audio.shape) == 2 else np.zeros(silence_difference), target_audio))
elif silence_difference < 0: return target_audio[:, -silence_difference:]if len(target_audio.shape) == 2 else target_audio[-silence_difference:]
else: return target_audio
def match_array_shapes(array_1, array_2, is_swap=False):
if is_swap: array_1, array_2 = array_1.T, array_2.T
if array_1.shape[1] > array_2.shape[1]: array_1 = array_1[:, : array_2.shape[1]]
elif array_1.shape[1] < array_2.shape[1]:
padding = array_2.shape[1] - array_1.shape[1]
array_1 = np.pad(array_1, ((0, 0), (0, padding)), "constant", constant_values=0)
if is_swap: array_1, array_2 = array_1.T, array_2.T
return array_1
def match_mono_array_shapes(array_1, array_2):
if len(array_1) > len(array_2): array_1 = array_1[: len(array_2)]
elif len(array_1) < len(array_2):
padding = len(array_2) - len(array_1)
array_1 = np.pad(array_1, (0, padding), "constant", constant_values=0)
return array_1
def change_pitch_semitones(y, sr, semitone_shift):
factor = 2 ** (semitone_shift / 12)
y_pitch_tuned = []
for y_channel in y:
y_pitch_tuned.append(librosa.resample(y_channel, orig_sr=sr, target_sr=sr * factor, res_type=wav_resolution_float_resampling))
y_pitch_tuned = np.array(y_pitch_tuned)
new_sr = sr * factor
return y_pitch_tuned, new_sr
def augment_audio(export_path, audio_file, rate, is_normalization, wav_type_set, save_format=None, is_pitch=False, is_time_correction=True):
wav, sr = librosa.load(audio_file, sr=44100, mono=False)
if wav.ndim == 1: wav = np.asfortranarray([wav, wav])
if not is_time_correction: wav_mix = change_pitch_semitones(wav, 44100, semitone_shift=-rate)[0]
else:
if is_pitch: wav_1, wav_2 = pitch_shift(wav[0], sr, rate, rbargs=None), pitch_shift(wav[1], sr, rate, rbargs=None)
else: wav_1, wav_2 = time_stretch(wav[0], sr, rate, rbargs=None), time_stretch(wav[1], sr, rate, rbargs=None)
if wav_1.shape > wav_2.shape: wav_2 = to_shape(wav_2, wav_1.shape)
if wav_1.shape < wav_2.shape: wav_1 = to_shape(wav_1, wav_2.shape)
wav_mix = np.asfortranarray([wav_1, wav_2])
sf.write(export_path, normalize(wav_mix.T, is_normalization), sr, subtype=wav_type_set)
save_format(export_path)
def average_audio(audio):
waves, wave_shapes, final_waves = [], [], []
for i in range(len(audio)):
wave = librosa.load(audio[i], sr=44100, mono=False)
waves.append(wave[0])
wave_shapes.append(wave[0].shape[1])
wave_shapes_index = wave_shapes.index(max(wave_shapes))
target_shape = waves[wave_shapes_index]
waves.pop(wave_shapes_index)
final_waves.append(target_shape)
for n_array in waves:
wav_target = to_shape(n_array, target_shape.shape)
final_waves.append(wav_target)
waves = sum(final_waves)
return waves / len(audio)
def average_dual_sources(wav_1, wav_2, value):
if wav_1.shape > wav_2.shape: wav_2 = to_shape(wav_2, wav_1.shape)
if wav_1.shape < wav_2.shape: wav_1 = to_shape(wav_1, wav_2.shape)
return (wav_1 * value) + (wav_2 * (1 - value))
def reshape_sources(wav_1, wav_2):
if wav_1.shape > wav_2.shape: wav_2 = to_shape(wav_2, wav_1.shape)
if wav_1.shape < wav_2.shape:
ln = min([wav_1.shape[1], wav_2.shape[1]])
wav_2 = wav_2[:, :ln]
ln = min([wav_1.shape[1], wav_2.shape[1]])
wav_1 = wav_1[:, :ln]
wav_2 = wav_2[:, :ln]
return wav_2
def reshape_sources_ref(wav_1_shape, wav_2):
if wav_1_shape > wav_2.shape: wav_2 = to_shape(wav_2, wav_1_shape)
return wav_2
def combine_arrarys(audio_sources, is_swap=False):
source = np.zeros_like(max(audio_sources, key=np.size))
for v in audio_sources:
v = match_array_shapes(v, source, is_swap=is_swap)
source += v
return source
def combine_audio(paths, audio_file_base=None, wav_type_set="FLOAT", save_format=None):
source = combine_arrarys([load_audio(i) for i in paths])
save_path = f"{audio_file_base}_combined.wav"
sf.write(save_path, source.T, 44100, subtype=wav_type_set)
save_format(save_path)
def reduce_mix_bv(inst_source, voc_source, reduction_rate=0.9):
return combine_arrarys([inst_source * (1 - reduction_rate), voc_source], is_swap=True)
def organize_inputs(inputs):
input_list = {"target": None, "reference": None, "reverb": None, "inst": None}
for i in inputs:
if i.endswith("_(Vocals).wav"): input_list["reference"] = i
elif "_RVC_" in i: input_list["target"] = i
elif i.endswith("reverbed_stem.wav"): input_list["reverb"] = i
elif i.endswith("_(Instrumental).wav"): input_list["inst"] = i
return input_list
def check_if_phase_inverted(wav1, wav2, is_mono=False):
if not is_mono:
wav1 = np.mean(wav1, axis=0)
wav2 = np.mean(wav2, axis=0)
return np.corrcoef(wav1[:1000], wav2[:1000])[0, 1] < 0
def align_audio(file1, file2, file2_aligned, file_subtracted, wav_type_set, is_save_aligned, command_Text, save_format, align_window, align_intro_val, db_analysis, set_progress_bar, phase_option, phase_shifts, is_match_silence, is_spec_match):
global progress_value
progress_value = 0
is_mono = False
def get_diff(a, b):
return np.correlate(a, b, "full").argmax() - (b.shape[0] - 1)
def progress_bar(length):
global progress_value
progress_value += 1
if (0.90 / length * progress_value) >= 0.9: length = progress_value + 1
set_progress_bar(0.1, (0.9 / length * progress_value))
wav1, sr1 = librosa.load(file1, sr=44100, mono=False)
wav2, sr2 = librosa.load(file2, sr=44100, mono=False)
if wav1.ndim == 1 and wav2.ndim == 1: is_mono = True
elif wav1.ndim == 1: wav1 = np.asfortranarray([wav1, wav1])
elif wav2.ndim == 1: wav2 = np.asfortranarray([wav2, wav2])
if phase_option == AUTO_PHASE:
if check_if_phase_inverted(wav1, wav2, is_mono=is_mono): wav2 = -wav2
elif phase_option == POSITIVE_PHASE: wav2 = +wav2
elif phase_option == NEGATIVE_PHASE: wav2 = -wav2
if is_match_silence: wav2 = adjust_leading_silence(wav2, wav1)
wav1_length = int(librosa.get_duration(y=wav1, sr=44100))
wav2_length = int(librosa.get_duration(y=wav2, sr=44100))
if not is_mono:
wav1 = wav1.transpose()
wav2 = wav2.transpose()
wav2_org = wav2.copy()
command_Text(translations["process_file"])
seconds_length = min(wav1_length, wav2_length)
wav2_aligned_sources = []
for sec_len in align_intro_val:
sec_seg = 1 if sec_len == 1 else int(seconds_length // sec_len)
index = sr1 * sec_seg
if is_mono:
samp1, samp2 = wav1[index : index + sr1], wav2[index : index + sr1]
diff = get_diff(samp1, samp2)
else:
index = sr1 * sec_seg
samp1, samp2 = wav1[index : index + sr1, 0], wav2[index : index + sr1, 0]
samp1_r, samp2_r = wav1[index : index + sr1, 1], wav2[index : index + sr1, 1]
diff, _ = get_diff(samp1, samp2), get_diff(samp1_r, samp2_r)
if diff > 0: wav2_aligned = np.append(np.zeros(diff) if is_mono else np.zeros((diff, 2)), wav2_org, axis=0)
elif diff < 0: wav2_aligned = wav2_org[-diff:]
else: wav2_aligned = wav2_org
if not any(np.array_equal(wav2_aligned, source) for source in wav2_aligned_sources): wav2_aligned_sources.append(wav2_aligned)
unique_sources = len(wav2_aligned_sources)
sub_mapper_big_mapper = {}
for s in wav2_aligned_sources:
wav2_aligned = match_mono_array_shapes(s, wav1) if is_mono else match_array_shapes(s, wav1, is_swap=True)
if align_window:
wav_sub = time_correction(wav1, wav2_aligned, seconds_length, align_window=align_window, db_analysis=db_analysis, progress_bar=progress_bar, unique_sources=unique_sources, phase_shifts=phase_shifts)
sub_mapper_big_mapper = {**sub_mapper_big_mapper, **{np.abs(wav_sub).mean(): wav_sub}}
else:
wav2_aligned = wav2_aligned * np.power(10, db_analysis[0] / 20)
for db_adjustment in db_analysis[1]:
sub_mapper_big_mapper = {**sub_mapper_big_mapper, **{np.abs(wav_sub).mean(): wav1 - (wav2_aligned * (10 ** (db_adjustment / 20)))}}
wav_sub = ensemble_for_align(list(sub_mapper_big_mapper.values())) if is_spec_match and len(list(sub_mapper_big_mapper.values())) >= 2 else ensemble_wav(list(sub_mapper_big_mapper.values()))
wav_sub = np.clip(wav_sub, -1, +1)
command_Text(translations["save_instruments"])
if is_save_aligned or is_spec_match:
wav1 = match_mono_array_shapes(wav1, wav_sub) if is_mono else match_array_shapes(wav1, wav_sub, is_swap=True)
wav2_aligned = wav1 - wav_sub
if is_spec_match:
if wav1.ndim == 1 and wav2.ndim == 1:
wav2_aligned = np.asfortranarray([wav2_aligned, wav2_aligned]).T
wav1 = np.asfortranarray([wav1, wav1]).T
wav2_aligned = ensemble_for_align([wav2_aligned, wav1])
wav_sub = wav1 - wav2_aligned
if is_save_aligned:
sf.write(file2_aligned, wav2_aligned, sr1, subtype=wav_type_set)
save_format(file2_aligned)
sf.write(file_subtracted, wav_sub, sr1, subtype=wav_type_set)
save_format(file_subtracted)
def phase_shift_hilbert(signal, degree):
analytic_signal = hilbert(signal)
return np.cos(np.radians(degree)) * analytic_signal.real - np.sin(np.radians(degree)) * analytic_signal.imag
def get_phase_shifted_tracks(track, phase_shift):
if phase_shift == 180: return [track, -track]
step = phase_shift
end = 180 - (180 % step) if 180 % step == 0 else 181
phase_range = range(step, end, step)
flipped_list = [track, -track]
for i in phase_range:
flipped_list.extend([phase_shift_hilbert(track, i), phase_shift_hilbert(track, -i)])
return flipped_list
def time_correction(mix, instrumental, seconds_length, align_window, db_analysis, sr=44100, progress_bar=None, unique_sources=None, phase_shifts=NONE_P):
def align_tracks(track1, track2):
shifted_tracks = {}
track2 = track2 * np.power(10, db_analysis[0] / 20)
track2_flipped = [track2] if phase_shifts == 190 else get_phase_shifted_tracks(track2, phase_shifts)
for db_adjustment in db_analysis[1]:
for t in track2_flipped:
track2_adjusted = t * (10 ** (db_adjustment / 20))
track2_shifted = np.roll(track2_adjusted, shift=np.argmax(np.abs(correlate(track1, track2_adjusted))) - (len(track1) - 1))
shifted_tracks[np.abs(track1 - track2_shifted).mean()] = track2_shifted
return shifted_tracks[min(shifted_tracks.keys())]
assert mix.shape == instrumental.shape, translations["assert"].format(mixshape=mix.shape, instrumentalshape=instrumental.shape)
seconds_length = seconds_length // 2
sub_mapper = {}
progress_update_interval, total_iterations = 120, 0
if len(align_window) > 2: progress_update_interval = 320
for secs in align_window:
step = secs / 2
window_size = int(sr * secs)
step_size = int(sr * step)
if len(mix.shape) == 1: total_iterations += ((len(range(0, len(mix) - window_size, step_size)) // progress_update_interval) * unique_sources)
else: total_iterations += ((len(range(0, len(mix[:, 0]) - window_size, step_size)) * 2 // progress_update_interval) * unique_sources)
for secs in align_window:
sub = np.zeros_like(mix)
divider = np.zeros_like(mix)
window_size = int(sr * secs)
step_size = int(sr * secs / 2)
window = np.hanning(window_size)
if len(mix.shape) == 1:
counter = 0
for i in range(0, len(mix) - window_size, step_size):
counter += 1
if counter % progress_update_interval == 0: progress_bar(total_iterations)
window_mix = mix[i : i + window_size] * window
window_instrumental = instrumental[i : i + window_size] * window
window_instrumental_aligned = align_tracks(window_mix, window_instrumental)
sub[i : i + window_size] += window_mix - window_instrumental_aligned
divider[i : i + window_size] += window
else:
counter = 0
for ch in range(mix.shape[1]):
for i in range(0, len(mix[:, ch]) - window_size, step_size):
counter += 1
if counter % progress_update_interval == 0: progress_bar(total_iterations)
window_mix = mix[i : i + window_size, ch] * window
window_instrumental = instrumental[i : i + window_size, ch] * window
window_instrumental_aligned = align_tracks(window_mix, window_instrumental)
sub[i : i + window_size, ch] += window_mix - window_instrumental_aligned
divider[i : i + window_size, ch] += window
return ensemble_wav(list({**sub_mapper, **{np.abs(sub).mean(): np.where(divider > 1e-6, sub / divider, sub)}}.values()), split_size=12)
def ensemble_wav(waveforms, split_size=240):
waveform_thirds = {i: np.array_split(waveform, split_size) for i, waveform in enumerate(waveforms)}
final_waveform = []
for third_idx in range(split_size):
final_waveform.append(waveform_thirds[np.argmin([np.abs(waveform_thirds[i][third_idx]).mean() for i in range(len(waveforms))])][third_idx])
return np.concatenate(final_waveform)
def ensemble_wav_min(waveforms):
for i in range(1, len(waveforms)):
if i == 1: wave = waveforms[0]
ln = min(len(wave), len(waveforms[i]))
wave = wave[:ln]
waveforms[i] = waveforms[i][:ln]
wave = np.where(np.abs(waveforms[i]) <= np.abs(wave), waveforms[i], wave)
return wave
def align_audio_test(wav1, wav2, sr1=44100):
def get_diff(a, b):
return np.correlate(a, b, "full").argmax() - (b.shape[0] - 1)
wav1 = wav1.transpose()
wav2 = wav2.transpose()
wav2_org = wav2.copy()
index = sr1
diff = get_diff(wav1[index : index + sr1, 0], wav2[index : index + sr1, 0])
if diff > 0: wav2_aligned = np.append(np.zeros((diff, 1)), wav2_org, axis=0)
elif diff < 0: wav2_aligned = wav2_org[-diff:]
else: wav2_aligned = wav2_org
return wav2_aligned
def load_audio(audio_file):
wav, _ = librosa.load(audio_file, sr=44100, mono=False)
if wav.ndim == 1: wav = np.asfortranarray([wav, wav])
return wav
def __rubberband(y, sr, **kwargs):
assert sr > 0
fd, infile = tempfile.mkstemp(suffix='.wav')
os.close(fd)
fd, outfile = tempfile.mkstemp(suffix='.wav')
os.close(fd)
sf.write(infile, y, sr)
try:
arguments = [os.path.join(BASE_PATH_RUB, 'rubberband'), '-q']
for key, value in six.iteritems(kwargs):
arguments.append(str(key))
arguments.append(str(value))
arguments.extend([infile, outfile])
subprocess.check_call(arguments, stdout=DEVNULL, stderr=DEVNULL)
y_out, _ = sf.read(outfile, always_2d=True)
if y.ndim == 1: y_out = np.squeeze(y_out)
except OSError as exc:
six.raise_from(RuntimeError(translations["rubberband"]), exc)
finally:
os.unlink(infile)
os.unlink(outfile)
return y_out
def time_stretch(y, sr, rate, rbargs=None):
if rate <= 0: raise ValueError(translations["rate"])
if rate == 1.0: return y
if rbargs is None: rbargs = dict()
rbargs.setdefault('--tempo', rate)
return __rubberband(y, sr, **rbargs)
def pitch_shift(y, sr, n_steps, rbargs=None):
if n_steps == 0: return y
if rbargs is None: rbargs = dict()
rbargs.setdefault('--pitch', n_steps)
return __rubberband(y, sr, **rbargs) |