File size: 1,213 Bytes
a126335
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import gradio as gr
from textblob import TextBlob

def sentiment_analysis(text: str) -> dict:
    """
    Analyze the sentiment of the given text.

    Args:
        text (str): The input text to analyze.

    Returns:
        dict: Sentiment metrics including polarity, subjectivity, and overall assessment.
    """
    blob = TextBlob(text)
    sentiment = blob.sentiment

    # Round for cleaner output
    polarity = round(sentiment.polarity, 2)
    subjectivity = round(sentiment.subjectivity, 2)

    # Classify overall sentiment
    if polarity > 0:
        assessment = "positive"
    elif polarity < 0:
        assessment = "negative"
    else:
        assessment = "neutral"

    return {
        "polarity": polarity,
        "subjectivity": subjectivity,
        "assessment": assessment
    }

# Create the Gradio interface
demo = gr.Interface(
    fn=sentiment_analysis,
    inputs=gr.Textbox(lines=4, placeholder="Enter text to analyze..."),
    outputs=gr.JSON(),
    title="Text Sentiment Analysis",
    description="Analyze the sentiment of a given text using TextBlob. MCP-compatible endpoint."
)

# Launch both web UI and MCP server
if __name__ == "__main__":
    demo.launch(mcp_server=True)