File size: 6,800 Bytes
cdfecf8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import argparse
import re
import tempfile
from collections import OrderedDict

import torch
from mmcv import Config


def is_head(key):
    valid_head_list = [
        'bbox_head', 'mask_head', 'semantic_head', 'grid_head', 'mask_iou_head'
    ]

    return any(key.startswith(h) for h in valid_head_list)


def parse_config(config_strings):
    temp_file = tempfile.NamedTemporaryFile()
    config_path = f'{temp_file.name}.py'
    with open(config_path, 'w') as f:
        f.write(config_strings)

    config = Config.fromfile(config_path)
    is_two_stage = True
    is_ssd = False
    is_retina = False
    reg_cls_agnostic = False
    if 'rpn_head' not in config.model:
        is_two_stage = False
        # check whether it is SSD
        if config.model.bbox_head.type == 'SSDHead':
            is_ssd = True
        elif config.model.bbox_head.type == 'RetinaHead':
            is_retina = True
    elif isinstance(config.model['bbox_head'], list):
        reg_cls_agnostic = True
    elif 'reg_class_agnostic' in config.model.bbox_head:
        reg_cls_agnostic = config.model.bbox_head \
            .reg_class_agnostic
    temp_file.close()
    return is_two_stage, is_ssd, is_retina, reg_cls_agnostic


def reorder_cls_channel(val, num_classes=81):
    # bias
    if val.dim() == 1:
        new_val = torch.cat((val[1:], val[:1]), dim=0)
    # weight
    else:
        out_channels, in_channels = val.shape[:2]
        # conv_cls for softmax output
        if out_channels != num_classes and out_channels % num_classes == 0:
            new_val = val.reshape(-1, num_classes, in_channels, *val.shape[2:])
            new_val = torch.cat((new_val[:, 1:], new_val[:, :1]), dim=1)
            new_val = new_val.reshape(val.size())
        # fc_cls
        elif out_channels == num_classes:
            new_val = torch.cat((val[1:], val[:1]), dim=0)
        # agnostic | retina_cls | rpn_cls
        else:
            new_val = val

    return new_val


def truncate_cls_channel(val, num_classes=81):

    # bias
    if val.dim() == 1:
        if val.size(0) % num_classes == 0:
            new_val = val[:num_classes - 1]
        else:
            new_val = val
    # weight
    else:
        out_channels, in_channels = val.shape[:2]
        # conv_logits
        if out_channels % num_classes == 0:
            new_val = val.reshape(num_classes, in_channels, *val.shape[2:])[1:]
            new_val = new_val.reshape(-1, *val.shape[1:])
        # agnostic
        else:
            new_val = val

    return new_val


def truncate_reg_channel(val, num_classes=81):
    # bias
    if val.dim() == 1:
        # fc_reg | rpn_reg
        if val.size(0) % num_classes == 0:
            new_val = val.reshape(num_classes, -1)[:num_classes - 1]
            new_val = new_val.reshape(-1)
        # agnostic
        else:
            new_val = val
    # weight
    else:
        out_channels, in_channels = val.shape[:2]
        # fc_reg | rpn_reg
        if out_channels % num_classes == 0:
            new_val = val.reshape(num_classes, -1, in_channels,
                                  *val.shape[2:])[1:]
            new_val = new_val.reshape(-1, *val.shape[1:])
        # agnostic
        else:
            new_val = val

    return new_val


def convert(in_file, out_file, num_classes):
    """Convert keys in checkpoints.

    There can be some breaking changes during the development of mmdetection,
    and this tool is used for upgrading checkpoints trained with old versions
    to the latest one.
    """
    checkpoint = torch.load(in_file)
    in_state_dict = checkpoint.pop('state_dict')
    out_state_dict = OrderedDict()
    meta_info = checkpoint['meta']
    is_two_stage, is_ssd, is_retina, reg_cls_agnostic = parse_config(
        '#' + meta_info['config'])
    if meta_info['mmdet_version'] <= '0.5.3' and is_retina:
        upgrade_retina = True
    else:
        upgrade_retina = False

    # MMDetection v2.5.0 unifies the class order in RPN
    # if the model is trained in version<v2.5.0
    # The RPN model should be upgraded to be used in version>=2.5.0
    if meta_info['mmdet_version'] < '2.5.0':
        upgrade_rpn = True
    else:
        upgrade_rpn = False

    for key, val in in_state_dict.items():
        new_key = key
        new_val = val
        if is_two_stage and is_head(key):
            new_key = 'roi_head.{}'.format(key)

        # classification
        if upgrade_rpn:
            m = re.search(
                r'(conv_cls|retina_cls|rpn_cls|fc_cls|fcos_cls|'
                r'fovea_cls).(weight|bias)', new_key)
        else:
            m = re.search(
                r'(conv_cls|retina_cls|fc_cls|fcos_cls|'
                r'fovea_cls).(weight|bias)', new_key)
        if m is not None:
            print(f'reorder cls channels of {new_key}')
            new_val = reorder_cls_channel(val, num_classes)

        # regression
        if upgrade_rpn:
            m = re.search(r'(fc_reg).(weight|bias)', new_key)
        else:
            m = re.search(r'(fc_reg|rpn_reg).(weight|bias)', new_key)
        if m is not None and not reg_cls_agnostic:
            print(f'truncate regression channels of {new_key}')
            new_val = truncate_reg_channel(val, num_classes)

        # mask head
        m = re.search(r'(conv_logits).(weight|bias)', new_key)
        if m is not None:
            print(f'truncate mask prediction channels of {new_key}')
            new_val = truncate_cls_channel(val, num_classes)

        m = re.search(r'(cls_convs|reg_convs).\d.(weight|bias)', key)
        # Legacy issues in RetinaNet since V1.x
        # Use ConvModule instead of nn.Conv2d in RetinaNet
        # cls_convs.0.weight -> cls_convs.0.conv.weight
        if m is not None and upgrade_retina:
            param = m.groups()[1]
            new_key = key.replace(param, f'conv.{param}')
            out_state_dict[new_key] = val
            print(f'rename the name of {key} to {new_key}')
            continue

        m = re.search(r'(cls_convs).\d.(weight|bias)', key)
        if m is not None and is_ssd:
            print(f'reorder cls channels of {new_key}')
            new_val = reorder_cls_channel(val, num_classes)

        out_state_dict[new_key] = new_val
    checkpoint['state_dict'] = out_state_dict
    torch.save(checkpoint, out_file)


def main():
    parser = argparse.ArgumentParser(description='Upgrade model version')
    parser.add_argument('in_file', help='input checkpoint file')
    parser.add_argument('out_file', help='output checkpoint file')
    parser.add_argument(
        '--num-classes',
        type=int,
        default=81,
        help='number of classes of the original model')
    args = parser.parse_args()
    convert(args.in_file, args.out_file, args.num_classes)


if __name__ == '__main__':
    main()