Spaces:
Build error
Build error
File size: 6,800 Bytes
cdfecf8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import argparse
import re
import tempfile
from collections import OrderedDict
import torch
from mmcv import Config
def is_head(key):
valid_head_list = [
'bbox_head', 'mask_head', 'semantic_head', 'grid_head', 'mask_iou_head'
]
return any(key.startswith(h) for h in valid_head_list)
def parse_config(config_strings):
temp_file = tempfile.NamedTemporaryFile()
config_path = f'{temp_file.name}.py'
with open(config_path, 'w') as f:
f.write(config_strings)
config = Config.fromfile(config_path)
is_two_stage = True
is_ssd = False
is_retina = False
reg_cls_agnostic = False
if 'rpn_head' not in config.model:
is_two_stage = False
# check whether it is SSD
if config.model.bbox_head.type == 'SSDHead':
is_ssd = True
elif config.model.bbox_head.type == 'RetinaHead':
is_retina = True
elif isinstance(config.model['bbox_head'], list):
reg_cls_agnostic = True
elif 'reg_class_agnostic' in config.model.bbox_head:
reg_cls_agnostic = config.model.bbox_head \
.reg_class_agnostic
temp_file.close()
return is_two_stage, is_ssd, is_retina, reg_cls_agnostic
def reorder_cls_channel(val, num_classes=81):
# bias
if val.dim() == 1:
new_val = torch.cat((val[1:], val[:1]), dim=0)
# weight
else:
out_channels, in_channels = val.shape[:2]
# conv_cls for softmax output
if out_channels != num_classes and out_channels % num_classes == 0:
new_val = val.reshape(-1, num_classes, in_channels, *val.shape[2:])
new_val = torch.cat((new_val[:, 1:], new_val[:, :1]), dim=1)
new_val = new_val.reshape(val.size())
# fc_cls
elif out_channels == num_classes:
new_val = torch.cat((val[1:], val[:1]), dim=0)
# agnostic | retina_cls | rpn_cls
else:
new_val = val
return new_val
def truncate_cls_channel(val, num_classes=81):
# bias
if val.dim() == 1:
if val.size(0) % num_classes == 0:
new_val = val[:num_classes - 1]
else:
new_val = val
# weight
else:
out_channels, in_channels = val.shape[:2]
# conv_logits
if out_channels % num_classes == 0:
new_val = val.reshape(num_classes, in_channels, *val.shape[2:])[1:]
new_val = new_val.reshape(-1, *val.shape[1:])
# agnostic
else:
new_val = val
return new_val
def truncate_reg_channel(val, num_classes=81):
# bias
if val.dim() == 1:
# fc_reg | rpn_reg
if val.size(0) % num_classes == 0:
new_val = val.reshape(num_classes, -1)[:num_classes - 1]
new_val = new_val.reshape(-1)
# agnostic
else:
new_val = val
# weight
else:
out_channels, in_channels = val.shape[:2]
# fc_reg | rpn_reg
if out_channels % num_classes == 0:
new_val = val.reshape(num_classes, -1, in_channels,
*val.shape[2:])[1:]
new_val = new_val.reshape(-1, *val.shape[1:])
# agnostic
else:
new_val = val
return new_val
def convert(in_file, out_file, num_classes):
"""Convert keys in checkpoints.
There can be some breaking changes during the development of mmdetection,
and this tool is used for upgrading checkpoints trained with old versions
to the latest one.
"""
checkpoint = torch.load(in_file)
in_state_dict = checkpoint.pop('state_dict')
out_state_dict = OrderedDict()
meta_info = checkpoint['meta']
is_two_stage, is_ssd, is_retina, reg_cls_agnostic = parse_config(
'#' + meta_info['config'])
if meta_info['mmdet_version'] <= '0.5.3' and is_retina:
upgrade_retina = True
else:
upgrade_retina = False
# MMDetection v2.5.0 unifies the class order in RPN
# if the model is trained in version<v2.5.0
# The RPN model should be upgraded to be used in version>=2.5.0
if meta_info['mmdet_version'] < '2.5.0':
upgrade_rpn = True
else:
upgrade_rpn = False
for key, val in in_state_dict.items():
new_key = key
new_val = val
if is_two_stage and is_head(key):
new_key = 'roi_head.{}'.format(key)
# classification
if upgrade_rpn:
m = re.search(
r'(conv_cls|retina_cls|rpn_cls|fc_cls|fcos_cls|'
r'fovea_cls).(weight|bias)', new_key)
else:
m = re.search(
r'(conv_cls|retina_cls|fc_cls|fcos_cls|'
r'fovea_cls).(weight|bias)', new_key)
if m is not None:
print(f'reorder cls channels of {new_key}')
new_val = reorder_cls_channel(val, num_classes)
# regression
if upgrade_rpn:
m = re.search(r'(fc_reg).(weight|bias)', new_key)
else:
m = re.search(r'(fc_reg|rpn_reg).(weight|bias)', new_key)
if m is not None and not reg_cls_agnostic:
print(f'truncate regression channels of {new_key}')
new_val = truncate_reg_channel(val, num_classes)
# mask head
m = re.search(r'(conv_logits).(weight|bias)', new_key)
if m is not None:
print(f'truncate mask prediction channels of {new_key}')
new_val = truncate_cls_channel(val, num_classes)
m = re.search(r'(cls_convs|reg_convs).\d.(weight|bias)', key)
# Legacy issues in RetinaNet since V1.x
# Use ConvModule instead of nn.Conv2d in RetinaNet
# cls_convs.0.weight -> cls_convs.0.conv.weight
if m is not None and upgrade_retina:
param = m.groups()[1]
new_key = key.replace(param, f'conv.{param}')
out_state_dict[new_key] = val
print(f'rename the name of {key} to {new_key}')
continue
m = re.search(r'(cls_convs).\d.(weight|bias)', key)
if m is not None and is_ssd:
print(f'reorder cls channels of {new_key}')
new_val = reorder_cls_channel(val, num_classes)
out_state_dict[new_key] = new_val
checkpoint['state_dict'] = out_state_dict
torch.save(checkpoint, out_file)
def main():
parser = argparse.ArgumentParser(description='Upgrade model version')
parser.add_argument('in_file', help='input checkpoint file')
parser.add_argument('out_file', help='output checkpoint file')
parser.add_argument(
'--num-classes',
type=int,
default=81,
help='number of classes of the original model')
args = parser.parse_args()
convert(args.in_file, args.out_file, args.num_classes)
if __name__ == '__main__':
main()
|