File size: 10,863 Bytes
cdfecf8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as cp
from mmcv.cnn import build_conv_layer, build_norm_layer, kaiming_init
from torch.nn.modules.utils import _pair

from mmdet.models.backbones.resnet import Bottleneck, ResNet
from mmdet.models.builder import BACKBONES


class TridentConv(nn.Module):
    """Trident Convolution Module.

    Args:
        in_channels (int): Number of channels in input.
        out_channels (int): Number of channels in output.
        kernel_size (int): Size of convolution kernel.
        stride (int, optional): Convolution stride. Default: 1.
        trident_dilations (tuple[int, int, int], optional): Dilations of
            different trident branch. Default: (1, 2, 3).
        test_branch_idx (int, optional): In inference, all 3 branches will
            be used if `test_branch_idx==-1`, otherwise only branch with
            index `test_branch_idx` will be used. Default: 1.
        bias (bool, optional): Whether to use bias in convolution or not.
            Default: False.
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 trident_dilations=(1, 2, 3),
                 test_branch_idx=1,
                 bias=False):
        super(TridentConv, self).__init__()
        self.num_branch = len(trident_dilations)
        self.with_bias = bias
        self.test_branch_idx = test_branch_idx
        self.stride = _pair(stride)
        self.kernel_size = _pair(kernel_size)
        self.paddings = _pair(trident_dilations)
        self.dilations = trident_dilations
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.bias = bias

        self.weight = nn.Parameter(
            torch.Tensor(out_channels, in_channels, *self.kernel_size))
        if bias:
            self.bias = nn.Parameter(torch.Tensor(out_channels))
        else:
            self.bias = None
        self.init_weights()

    def init_weights(self):
        kaiming_init(self, distribution='uniform', mode='fan_in')

    def extra_repr(self):
        tmpstr = f'in_channels={self.in_channels}'
        tmpstr += f', out_channels={self.out_channels}'
        tmpstr += f', kernel_size={self.kernel_size}'
        tmpstr += f', num_branch={self.num_branch}'
        tmpstr += f', test_branch_idx={self.test_branch_idx}'
        tmpstr += f', stride={self.stride}'
        tmpstr += f', paddings={self.paddings}'
        tmpstr += f', dilations={self.dilations}'
        tmpstr += f', bias={self.bias}'
        return tmpstr

    def forward(self, inputs):
        if self.training or self.test_branch_idx == -1:
            outputs = [
                F.conv2d(input, self.weight, self.bias, self.stride, padding,
                         dilation) for input, dilation, padding in zip(
                             inputs, self.dilations, self.paddings)
            ]
        else:
            assert len(inputs) == 1
            outputs = [
                F.conv2d(inputs[0], self.weight, self.bias, self.stride,
                         self.paddings[self.test_branch_idx],
                         self.dilations[self.test_branch_idx])
            ]

        return outputs


# Since TridentNet is defined over ResNet50 and ResNet101, here we
# only support TridentBottleneckBlock.
class TridentBottleneck(Bottleneck):
    """BottleBlock for TridentResNet.

    Args:
        trident_dilations (tuple[int, int, int]): Dilations of different
            trident branch.
        test_branch_idx (int): In inference, all 3 branches will be used
            if `test_branch_idx==-1`, otherwise only branch with index
            `test_branch_idx` will be used.
        concat_output (bool): Whether to concat the output list to a Tensor.
            `True` only in the last Block.
    """

    def __init__(self, trident_dilations, test_branch_idx, concat_output,
                 **kwargs):

        super(TridentBottleneck, self).__init__(**kwargs)
        self.trident_dilations = trident_dilations
        self.num_branch = len(trident_dilations)
        self.concat_output = concat_output
        self.test_branch_idx = test_branch_idx
        self.conv2 = TridentConv(
            self.planes,
            self.planes,
            kernel_size=3,
            stride=self.conv2_stride,
            bias=False,
            trident_dilations=self.trident_dilations,
            test_branch_idx=test_branch_idx)

    def forward(self, x):

        def _inner_forward(x):
            num_branch = (
                self.num_branch
                if self.training or self.test_branch_idx == -1 else 1)
            identity = x
            if not isinstance(x, list):
                x = (x, ) * num_branch
                identity = x
                if self.downsample is not None:
                    identity = [self.downsample(b) for b in x]

            out = [self.conv1(b) for b in x]
            out = [self.norm1(b) for b in out]
            out = [self.relu(b) for b in out]

            if self.with_plugins:
                for k in range(len(out)):
                    out[k] = self.forward_plugin(out[k],
                                                 self.after_conv1_plugin_names)

            out = self.conv2(out)
            out = [self.norm2(b) for b in out]
            out = [self.relu(b) for b in out]
            if self.with_plugins:
                for k in range(len(out)):
                    out[k] = self.forward_plugin(out[k],
                                                 self.after_conv2_plugin_names)

            out = [self.conv3(b) for b in out]
            out = [self.norm3(b) for b in out]

            if self.with_plugins:
                for k in range(len(out)):
                    out[k] = self.forward_plugin(out[k],
                                                 self.after_conv3_plugin_names)

            out = [
                out_b + identity_b for out_b, identity_b in zip(out, identity)
            ]
            return out

        if self.with_cp and x.requires_grad:
            out = cp.checkpoint(_inner_forward, x)
        else:
            out = _inner_forward(x)

        out = [self.relu(b) for b in out]
        if self.concat_output:
            out = torch.cat(out, dim=0)
        return out


def make_trident_res_layer(block,
                           inplanes,
                           planes,
                           num_blocks,
                           stride=1,
                           trident_dilations=(1, 2, 3),
                           style='pytorch',
                           with_cp=False,
                           conv_cfg=None,
                           norm_cfg=dict(type='BN'),
                           dcn=None,
                           plugins=None,
                           test_branch_idx=-1):
    """Build Trident Res Layers."""

    downsample = None
    if stride != 1 or inplanes != planes * block.expansion:
        downsample = []
        conv_stride = stride
        downsample.extend([
            build_conv_layer(
                conv_cfg,
                inplanes,
                planes * block.expansion,
                kernel_size=1,
                stride=conv_stride,
                bias=False),
            build_norm_layer(norm_cfg, planes * block.expansion)[1]
        ])
        downsample = nn.Sequential(*downsample)

    layers = []
    for i in range(num_blocks):
        layers.append(
            block(
                inplanes=inplanes,
                planes=planes,
                stride=stride if i == 0 else 1,
                trident_dilations=trident_dilations,
                downsample=downsample if i == 0 else None,
                style=style,
                with_cp=with_cp,
                conv_cfg=conv_cfg,
                norm_cfg=norm_cfg,
                dcn=dcn,
                plugins=plugins,
                test_branch_idx=test_branch_idx,
                concat_output=True if i == num_blocks - 1 else False))
        inplanes = planes * block.expansion
    return nn.Sequential(*layers)


@BACKBONES.register_module()
class TridentResNet(ResNet):
    """The stem layer, stage 1 and stage 2 in Trident ResNet are identical to
    ResNet, while in stage 3, Trident BottleBlock is utilized to replace the
    normal BottleBlock to yield trident output. Different branch shares the
    convolution weight but uses different dilations to achieve multi-scale
    output.

                               / stage3(b0) \
    x - stem - stage1 - stage2 - stage3(b1) - output
                               \ stage3(b2) /

    Args:
        depth (int): Depth of resnet, from {50, 101, 152}.
        num_branch (int): Number of branches in TridentNet.
        test_branch_idx (int): In inference, all 3 branches will be used
            if `test_branch_idx==-1`, otherwise only branch with index
            `test_branch_idx` will be used.
        trident_dilations (tuple[int]): Dilations of different trident branch.
            len(trident_dilations) should be equal to num_branch.
    """  # noqa

    def __init__(self, depth, num_branch, test_branch_idx, trident_dilations,
                 **kwargs):

        assert num_branch == len(trident_dilations)
        assert depth in (50, 101, 152)
        super(TridentResNet, self).__init__(depth, **kwargs)
        assert self.num_stages == 3
        self.test_branch_idx = test_branch_idx
        self.num_branch = num_branch

        last_stage_idx = self.num_stages - 1
        stride = self.strides[last_stage_idx]
        dilation = trident_dilations
        dcn = self.dcn if self.stage_with_dcn[last_stage_idx] else None
        if self.plugins is not None:
            stage_plugins = self.make_stage_plugins(self.plugins,
                                                    last_stage_idx)
        else:
            stage_plugins = None
        planes = self.base_channels * 2**last_stage_idx
        res_layer = make_trident_res_layer(
            TridentBottleneck,
            inplanes=(self.block.expansion * self.base_channels *
                      2**(last_stage_idx - 1)),
            planes=planes,
            num_blocks=self.stage_blocks[last_stage_idx],
            stride=stride,
            trident_dilations=dilation,
            style=self.style,
            with_cp=self.with_cp,
            conv_cfg=self.conv_cfg,
            norm_cfg=self.norm_cfg,
            dcn=dcn,
            plugins=stage_plugins,
            test_branch_idx=self.test_branch_idx)

        layer_name = f'layer{last_stage_idx + 1}'

        self.__setattr__(layer_name, res_layer)
        self.res_layers.pop(last_stage_idx)
        self.res_layers.insert(last_stage_idx, layer_name)

        self._freeze_stages()