File size: 5,882 Bytes
cdfecf8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import VGG, constant_init, kaiming_init, normal_init, xavier_init
from mmcv.runner import load_checkpoint

from mmdet.utils import get_root_logger
from ..builder import BACKBONES


@BACKBONES.register_module()
class SSDVGG(VGG):
    """VGG Backbone network for single-shot-detection.

    Args:
        input_size (int): width and height of input, from {300, 512}.
        depth (int): Depth of vgg, from {11, 13, 16, 19}.
        out_indices (Sequence[int]): Output from which stages.

    Example:
        >>> self = SSDVGG(input_size=300, depth=11)
        >>> self.eval()
        >>> inputs = torch.rand(1, 3, 300, 300)
        >>> level_outputs = self.forward(inputs)
        >>> for level_out in level_outputs:
        ...     print(tuple(level_out.shape))
        (1, 1024, 19, 19)
        (1, 512, 10, 10)
        (1, 256, 5, 5)
        (1, 256, 3, 3)
        (1, 256, 1, 1)
    """
    extra_setting = {
        300: (256, 'S', 512, 128, 'S', 256, 128, 256, 128, 256),
        512: (256, 'S', 512, 128, 'S', 256, 128, 'S', 256, 128, 'S', 256, 128),
    }

    def __init__(self,
                 input_size,
                 depth,
                 with_last_pool=False,
                 ceil_mode=True,
                 out_indices=(3, 4),
                 out_feature_indices=(22, 34),
                 l2_norm_scale=20.):
        # TODO: in_channels for mmcv.VGG
        super(SSDVGG, self).__init__(
            depth,
            with_last_pool=with_last_pool,
            ceil_mode=ceil_mode,
            out_indices=out_indices)
        assert input_size in (300, 512)
        self.input_size = input_size

        self.features.add_module(
            str(len(self.features)),
            nn.MaxPool2d(kernel_size=3, stride=1, padding=1))
        self.features.add_module(
            str(len(self.features)),
            nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6))
        self.features.add_module(
            str(len(self.features)), nn.ReLU(inplace=True))
        self.features.add_module(
            str(len(self.features)), nn.Conv2d(1024, 1024, kernel_size=1))
        self.features.add_module(
            str(len(self.features)), nn.ReLU(inplace=True))
        self.out_feature_indices = out_feature_indices

        self.inplanes = 1024
        self.extra = self._make_extra_layers(self.extra_setting[input_size])
        self.l2_norm = L2Norm(
            self.features[out_feature_indices[0] - 1].out_channels,
            l2_norm_scale)

    def init_weights(self, pretrained=None):
        """Initialize the weights in backbone.

        Args:
            pretrained (str, optional): Path to pre-trained weights.
                Defaults to None.
        """
        if isinstance(pretrained, str):
            logger = get_root_logger()
            load_checkpoint(self, pretrained, strict=False, logger=logger)
        elif pretrained is None:
            for m in self.features.modules():
                if isinstance(m, nn.Conv2d):
                    kaiming_init(m)
                elif isinstance(m, nn.BatchNorm2d):
                    constant_init(m, 1)
                elif isinstance(m, nn.Linear):
                    normal_init(m, std=0.01)
        else:
            raise TypeError('pretrained must be a str or None')

        for m in self.extra.modules():
            if isinstance(m, nn.Conv2d):
                xavier_init(m, distribution='uniform')

        constant_init(self.l2_norm, self.l2_norm.scale)

    def forward(self, x):
        """Forward function."""
        outs = []
        for i, layer in enumerate(self.features):
            x = layer(x)
            if i in self.out_feature_indices:
                outs.append(x)
        for i, layer in enumerate(self.extra):
            x = F.relu(layer(x), inplace=True)
            if i % 2 == 1:
                outs.append(x)
        outs[0] = self.l2_norm(outs[0])
        if len(outs) == 1:
            return outs[0]
        else:
            return tuple(outs)

    def _make_extra_layers(self, outplanes):
        layers = []
        kernel_sizes = (1, 3)
        num_layers = 0
        outplane = None
        for i in range(len(outplanes)):
            if self.inplanes == 'S':
                self.inplanes = outplane
                continue
            k = kernel_sizes[num_layers % 2]
            if outplanes[i] == 'S':
                outplane = outplanes[i + 1]
                conv = nn.Conv2d(
                    self.inplanes, outplane, k, stride=2, padding=1)
            else:
                outplane = outplanes[i]
                conv = nn.Conv2d(
                    self.inplanes, outplane, k, stride=1, padding=0)
            layers.append(conv)
            self.inplanes = outplanes[i]
            num_layers += 1
        if self.input_size == 512:
            layers.append(nn.Conv2d(self.inplanes, 256, 4, padding=1))

        return nn.Sequential(*layers)


class L2Norm(nn.Module):

    def __init__(self, n_dims, scale=20., eps=1e-10):
        """L2 normalization layer.

        Args:
            n_dims (int): Number of dimensions to be normalized
            scale (float, optional): Defaults to 20..
            eps (float, optional): Used to avoid division by zero.
                Defaults to 1e-10.
        """
        super(L2Norm, self).__init__()
        self.n_dims = n_dims
        self.weight = nn.Parameter(torch.Tensor(self.n_dims))
        self.eps = eps
        self.scale = scale

    def forward(self, x):
        """Forward function."""
        # normalization layer convert to FP32 in FP16 training
        x_float = x.float()
        norm = x_float.pow(2).sum(1, keepdim=True).sqrt() + self.eps
        return (self.weight[None, :, None, None].float().expand_as(x_float) *
                x_float / norm).type_as(x)