File size: 5,284 Bytes
cdfecf8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import copy
import platform
import random
from functools import partial

import numpy as np
from mmcv.parallel import collate
from mmcv.runner import get_dist_info
from mmcv.utils import Registry, build_from_cfg
from torch.utils.data import DataLoader

from .samplers import DistributedGroupSampler, DistributedSampler, GroupSampler

if platform.system() != 'Windows':
    # https://github.com/pytorch/pytorch/issues/973
    import resource
    rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
    hard_limit = rlimit[1]
    soft_limit = min(4096, hard_limit)
    resource.setrlimit(resource.RLIMIT_NOFILE, (soft_limit, hard_limit))

DATASETS = Registry('dataset')
PIPELINES = Registry('pipeline')


def _concat_dataset(cfg, default_args=None):
    from .dataset_wrappers import ConcatDataset
    ann_files = cfg['ann_file']
    img_prefixes = cfg.get('img_prefix', None)
    seg_prefixes = cfg.get('seg_prefix', None)
    proposal_files = cfg.get('proposal_file', None)
    separate_eval = cfg.get('separate_eval', True)

    datasets = []
    num_dset = len(ann_files)
    for i in range(num_dset):
        data_cfg = copy.deepcopy(cfg)
        # pop 'separate_eval' since it is not a valid key for common datasets.
        if 'separate_eval' in data_cfg:
            data_cfg.pop('separate_eval')
        data_cfg['ann_file'] = ann_files[i]
        if isinstance(img_prefixes, (list, tuple)):
            data_cfg['img_prefix'] = img_prefixes[i]
        if isinstance(seg_prefixes, (list, tuple)):
            data_cfg['seg_prefix'] = seg_prefixes[i]
        if isinstance(proposal_files, (list, tuple)):
            data_cfg['proposal_file'] = proposal_files[i]
        datasets.append(build_dataset(data_cfg, default_args))

    return ConcatDataset(datasets, separate_eval)


def build_dataset(cfg, default_args=None):
    from .dataset_wrappers import (ConcatDataset, RepeatDataset,
                                   ClassBalancedDataset)
    if isinstance(cfg, (list, tuple)):
        dataset = ConcatDataset([build_dataset(c, default_args) for c in cfg])
    elif cfg['type'] == 'ConcatDataset':
        dataset = ConcatDataset(
            [build_dataset(c, default_args) for c in cfg['datasets']],
            cfg.get('separate_eval', True))
    elif cfg['type'] == 'RepeatDataset':
        dataset = RepeatDataset(
            build_dataset(cfg['dataset'], default_args), cfg['times'])
    elif cfg['type'] == 'ClassBalancedDataset':
        dataset = ClassBalancedDataset(
            build_dataset(cfg['dataset'], default_args), cfg['oversample_thr'])
    elif isinstance(cfg.get('ann_file'), (list, tuple)):
        dataset = _concat_dataset(cfg, default_args)
    else:
        dataset = build_from_cfg(cfg, DATASETS, default_args)

    return dataset


def build_dataloader(dataset,
                     samples_per_gpu,
                     workers_per_gpu,
                     num_gpus=1,
                     dist=True,
                     shuffle=True,
                     seed=None,
                     **kwargs):
    """Build PyTorch DataLoader.

    In distributed training, each GPU/process has a dataloader.
    In non-distributed training, there is only one dataloader for all GPUs.

    Args:
        dataset (Dataset): A PyTorch dataset.
        samples_per_gpu (int): Number of training samples on each GPU, i.e.,
            batch size of each GPU.
        workers_per_gpu (int): How many subprocesses to use for data loading
            for each GPU.
        num_gpus (int): Number of GPUs. Only used in non-distributed training.
        dist (bool): Distributed training/test or not. Default: True.
        shuffle (bool): Whether to shuffle the data at every epoch.
            Default: True.
        kwargs: any keyword argument to be used to initialize DataLoader

    Returns:
        DataLoader: A PyTorch dataloader.
    """
    rank, world_size = get_dist_info()
    if dist:
        # DistributedGroupSampler will definitely shuffle the data to satisfy
        # that images on each GPU are in the same group
        if shuffle:
            sampler = DistributedGroupSampler(
                dataset, samples_per_gpu, world_size, rank, seed=seed)
        else:
            sampler = DistributedSampler(
                dataset, world_size, rank, shuffle=False, seed=seed)
        batch_size = samples_per_gpu
        num_workers = workers_per_gpu
    else:
        sampler = GroupSampler(dataset, samples_per_gpu) if shuffle else None
        batch_size = num_gpus * samples_per_gpu
        num_workers = num_gpus * workers_per_gpu

    init_fn = partial(
        worker_init_fn, num_workers=num_workers, rank=rank,
        seed=seed) if seed is not None else None

    data_loader = DataLoader(
        dataset,
        batch_size=batch_size,
        sampler=sampler,
        num_workers=num_workers,
        collate_fn=partial(collate, samples_per_gpu=samples_per_gpu),
        pin_memory=False,
        worker_init_fn=init_fn,
        **kwargs)

    return data_loader


def worker_init_fn(worker_id, num_workers, rank, seed):
    # The seed of each worker equals to
    # num_worker * rank + worker_id + user_seed
    worker_seed = num_workers * rank + worker_id + seed
    np.random.seed(worker_seed)
    random.seed(worker_seed)