Spaces:
Runtime error
Runtime error
File size: 8,491 Bytes
e0097f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
from collections import OrderedDict
import torch
from diffusers import (
AutoPipelineForImage2Image,
AutoPipelineForInpainting,
AutoPipelineForText2Image,
ControlNetModel,
)
from diffusers.pipelines.auto_pipeline import (
AUTO_IMAGE2IMAGE_PIPELINES_MAPPING,
AUTO_INPAINT_PIPELINES_MAPPING,
AUTO_TEXT2IMAGE_PIPELINES_MAPPING,
)
from diffusers.utils import slow
PRETRAINED_MODEL_REPO_MAPPING = OrderedDict(
[
("stable-diffusion", "runwayml/stable-diffusion-v1-5"),
("if", "DeepFloyd/IF-I-XL-v1.0"),
("kandinsky", "kandinsky-community/kandinsky-2-1"),
("kandinsky22", "kandinsky-community/kandinsky-2-2-decoder"),
]
)
class AutoPipelineFastTest(unittest.TestCase):
def test_from_pipe_consistent(self):
pipe = AutoPipelineForText2Image.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-pipe", requires_safety_checker=False
)
original_config = dict(pipe.config)
pipe = AutoPipelineForImage2Image.from_pipe(pipe)
assert dict(pipe.config) == original_config
pipe = AutoPipelineForText2Image.from_pipe(pipe)
assert dict(pipe.config) == original_config
def test_from_pipe_override(self):
pipe = AutoPipelineForText2Image.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-pipe", requires_safety_checker=False
)
pipe = AutoPipelineForImage2Image.from_pipe(pipe, requires_safety_checker=True)
assert pipe.config.requires_safety_checker is True
pipe = AutoPipelineForText2Image.from_pipe(pipe, requires_safety_checker=True)
assert pipe.config.requires_safety_checker is True
def test_from_pipe_consistent_sdxl(self):
pipe = AutoPipelineForImage2Image.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-xl-pipe",
requires_aesthetics_score=True,
force_zeros_for_empty_prompt=False,
)
original_config = dict(pipe.config)
pipe = AutoPipelineForText2Image.from_pipe(pipe)
pipe = AutoPipelineForImage2Image.from_pipe(pipe)
assert dict(pipe.config) == original_config
@slow
class AutoPipelineIntegrationTest(unittest.TestCase):
def test_pipe_auto(self):
for model_name, model_repo in PRETRAINED_MODEL_REPO_MAPPING.items():
# test txt2img
pipe_txt2img = AutoPipelineForText2Image.from_pretrained(
model_repo, variant="fp16", torch_dtype=torch.float16
)
self.assertIsInstance(pipe_txt2img, AUTO_TEXT2IMAGE_PIPELINES_MAPPING[model_name])
pipe_to = AutoPipelineForText2Image.from_pipe(pipe_txt2img)
self.assertIsInstance(pipe_to, AUTO_TEXT2IMAGE_PIPELINES_MAPPING[model_name])
pipe_to = AutoPipelineForImage2Image.from_pipe(pipe_txt2img)
self.assertIsInstance(pipe_to, AUTO_IMAGE2IMAGE_PIPELINES_MAPPING[model_name])
if "kandinsky" not in model_name:
pipe_to = AutoPipelineForInpainting.from_pipe(pipe_txt2img)
self.assertIsInstance(pipe_to, AUTO_INPAINT_PIPELINES_MAPPING[model_name])
del pipe_txt2img, pipe_to
gc.collect()
# test img2img
pipe_img2img = AutoPipelineForImage2Image.from_pretrained(
model_repo, variant="fp16", torch_dtype=torch.float16
)
self.assertIsInstance(pipe_img2img, AUTO_IMAGE2IMAGE_PIPELINES_MAPPING[model_name])
pipe_to = AutoPipelineForText2Image.from_pipe(pipe_img2img)
self.assertIsInstance(pipe_to, AUTO_TEXT2IMAGE_PIPELINES_MAPPING[model_name])
pipe_to = AutoPipelineForImage2Image.from_pipe(pipe_img2img)
self.assertIsInstance(pipe_to, AUTO_IMAGE2IMAGE_PIPELINES_MAPPING[model_name])
if "kandinsky" not in model_name:
pipe_to = AutoPipelineForInpainting.from_pipe(pipe_img2img)
self.assertIsInstance(pipe_to, AUTO_INPAINT_PIPELINES_MAPPING[model_name])
del pipe_img2img, pipe_to
gc.collect()
# test inpaint
if "kandinsky" not in model_name:
pipe_inpaint = AutoPipelineForInpainting.from_pretrained(
model_repo, variant="fp16", torch_dtype=torch.float16
)
self.assertIsInstance(pipe_inpaint, AUTO_INPAINT_PIPELINES_MAPPING[model_name])
pipe_to = AutoPipelineForText2Image.from_pipe(pipe_inpaint)
self.assertIsInstance(pipe_to, AUTO_TEXT2IMAGE_PIPELINES_MAPPING[model_name])
pipe_to = AutoPipelineForImage2Image.from_pipe(pipe_inpaint)
self.assertIsInstance(pipe_to, AUTO_IMAGE2IMAGE_PIPELINES_MAPPING[model_name])
pipe_to = AutoPipelineForInpainting.from_pipe(pipe_inpaint)
self.assertIsInstance(pipe_to, AUTO_INPAINT_PIPELINES_MAPPING[model_name])
del pipe_inpaint, pipe_to
gc.collect()
def test_from_pipe_consistent(self):
for model_name, model_repo in PRETRAINED_MODEL_REPO_MAPPING.items():
if model_name in ["kandinsky", "kandinsky22"]:
auto_pipes = [AutoPipelineForText2Image, AutoPipelineForImage2Image]
else:
auto_pipes = [AutoPipelineForText2Image, AutoPipelineForImage2Image, AutoPipelineForInpainting]
# test from_pretrained
for pipe_from_class in auto_pipes:
pipe_from = pipe_from_class.from_pretrained(model_repo, variant="fp16", torch_dtype=torch.float16)
pipe_from_config = dict(pipe_from.config)
for pipe_to_class in auto_pipes:
pipe_to = pipe_to_class.from_pipe(pipe_from)
self.assertEqual(dict(pipe_to.config), pipe_from_config)
del pipe_from, pipe_to
gc.collect()
def test_controlnet(self):
# test from_pretrained
model_repo = "runwayml/stable-diffusion-v1-5"
controlnet_repo = "lllyasviel/sd-controlnet-canny"
controlnet = ControlNetModel.from_pretrained(controlnet_repo, torch_dtype=torch.float16)
pipe_txt2img = AutoPipelineForText2Image.from_pretrained(
model_repo, controlnet=controlnet, torch_dtype=torch.float16
)
self.assertIsInstance(pipe_txt2img, AUTO_TEXT2IMAGE_PIPELINES_MAPPING["stable-diffusion-controlnet"])
pipe_img2img = AutoPipelineForImage2Image.from_pretrained(
model_repo, controlnet=controlnet, torch_dtype=torch.float16
)
self.assertIsInstance(pipe_img2img, AUTO_IMAGE2IMAGE_PIPELINES_MAPPING["stable-diffusion-controlnet"])
pipe_inpaint = AutoPipelineForInpainting.from_pretrained(
model_repo, controlnet=controlnet, torch_dtype=torch.float16
)
self.assertIsInstance(pipe_inpaint, AUTO_INPAINT_PIPELINES_MAPPING["stable-diffusion-controlnet"])
# test from_pipe
for pipe_from in [pipe_txt2img, pipe_img2img, pipe_inpaint]:
pipe_to = AutoPipelineForText2Image.from_pipe(pipe_from)
self.assertIsInstance(pipe_to, AUTO_TEXT2IMAGE_PIPELINES_MAPPING["stable-diffusion-controlnet"])
self.assertEqual(dict(pipe_to.config), dict(pipe_txt2img.config))
pipe_to = AutoPipelineForImage2Image.from_pipe(pipe_from)
self.assertIsInstance(pipe_to, AUTO_IMAGE2IMAGE_PIPELINES_MAPPING["stable-diffusion-controlnet"])
self.assertEqual(dict(pipe_to.config), dict(pipe_img2img.config))
pipe_to = AutoPipelineForInpainting.from_pipe(pipe_from)
self.assertIsInstance(pipe_to, AUTO_INPAINT_PIPELINES_MAPPING["stable-diffusion-controlnet"])
self.assertEqual(dict(pipe_to.config), dict(pipe_inpaint.config))
|