File size: 28,980 Bytes
97a4ae5
 
 
 
 
 
 
 
 
 
f4275bf
 
 
97a4ae5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4275bf
 
 
 
 
 
 
 
 
 
 
97a4ae5
 
 
 
 
 
f4275bf
 
 
97a4ae5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4275bf
97a4ae5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4275bf
 
 
 
 
 
 
 
 
 
 
 
 
f722385
f4275bf
5c73715
99ecc54
f722385
99ecc54
f722385
f4275bf
 
97a4ae5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99ecc54
 
 
 
 
 
 
 
 
 
f4275bf
 
 
97a4ae5
 
 
 
 
 
 
 
 
f4275bf
 
 
 
 
 
99ecc54
 
 
 
f4275bf
 
 
97a4ae5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e75e2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97a4ae5
 
4e75e2b
97a4ae5
4e75e2b
97a4ae5
 
4e75e2b
97a4ae5
4e75e2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97a4ae5
 
4e75e2b
97a4ae5
4e75e2b
 
 
97a4ae5
 
 
 
4e75e2b
 
 
97a4ae5
4e75e2b
 
 
97a4ae5
 
4e75e2b
 
 
97a4ae5
 
 
 
4e75e2b
97a4ae5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99ecc54
 
 
 
 
 
 
 
 
 
 
 
 
97a4ae5
 
 
 
 
 
 
f4275bf
 
 
 
 
 
97a4ae5
4e75e2b
 
 
 
ffa6f25
97a4ae5
 
 
4e75e2b
 
 
e0cfbe7
4e75e2b
bd39e10
 
e0cfbe7
4e75e2b
97a4ae5
 
 
4e75e2b
97a4ae5
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
import numpy as np
import torch
import time
import threading
import os
import queue
import torchaudio
from scipy.spatial.distance import cosine
from scipy.signal import resample
import logging
import urllib.request
# Import RealtimeSTT for transcription
from RealtimeSTT import AudioToTextRecorder

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Simplified configuration parameters
SILENCE_THRESHS = [0, 0.4]
FINAL_TRANSCRIPTION_MODEL = "distil-large-v3"
FINAL_BEAM_SIZE = 5
REALTIME_TRANSCRIPTION_MODEL = "distil-small.en"
REALTIME_BEAM_SIZE = 5
TRANSCRIPTION_LANGUAGE = "en"
SILERO_SENSITIVITY = 0.4
WEBRTC_SENSITIVITY = 3
MIN_LENGTH_OF_RECORDING = 0.7
PRE_RECORDING_BUFFER_DURATION = 0.35

# Speaker change detection parameters
DEFAULT_CHANGE_THRESHOLD = 0.65
EMBEDDING_HISTORY_SIZE = 5
MIN_SEGMENT_DURATION = 1.5
DEFAULT_MAX_SPEAKERS = 4
ABSOLUTE_MAX_SPEAKERS = 8

# Global variables
SAMPLE_RATE = 16000
BUFFER_SIZE = 1024
CHANNELS = 1

# Speaker colors - more distinguishable colors
SPEAKER_COLORS = [
    "#FF6B6B",  # Red
    "#4ECDC4",  # Teal
    "#45B7D1",  # Blue
    "#96CEB4",  # Green
    "#FFEAA7",  # Yellow
    "#DDA0DD",  # Plum
    "#98D8C8",  # Mint
    "#F7DC6F",  # Gold
]

SPEAKER_COLOR_NAMES = [
    "Red", "Teal", "Blue", "Green", "Yellow", "Plum", "Mint", "Gold"
]


class SpeechBrainEncoder:
    """ECAPA-TDNN encoder from SpeechBrain for speaker embeddings"""
    def __init__(self, device="cpu"):
        self.device = device
        self.model = None
        self.embedding_dim = 192
        self.model_loaded = False
        self.cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "speechbrain")
        os.makedirs(self.cache_dir, exist_ok=True)
    
    def _download_model(self):
        """Download pre-trained SpeechBrain ECAPA-TDNN model if not present"""
        model_url = "https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb/resolve/main/embedding_model.ckpt"
        model_path = os.path.join(self.cache_dir, "embedding_model.ckpt")
        
        if not os.path.exists(model_path):
            print(f"Downloading ECAPA-TDNN model to {model_path}...")
            urllib.request.urlretrieve(model_url, model_path)
        
        return model_path
    
    def load_model(self):
        """Load the ECAPA-TDNN model"""
        try:
            # Import SpeechBrain
            from speechbrain.pretrained import EncoderClassifier
            
            # Get model path
            model_path = self._download_model()
            
            # Load the pre-trained model
            self.model = EncoderClassifier.from_hparams(
                source="speechbrain/spkrec-ecapa-voxceleb",
                savedir=self.cache_dir,
                run_opts={"device": self.device}
            )
            
            self.model_loaded = True
            return True
        except Exception as e:
            print(f"Error loading ECAPA-TDNN model: {e}")
            return False
    
    def embed_utterance(self, audio, sr=16000):
        """Extract speaker embedding from audio"""
        if not self.model_loaded:
            raise ValueError("Model not loaded. Call load_model() first.")
        
        try:
            if isinstance(audio, np.ndarray):
                # Ensure audio is float32 and properly normalized
                audio = audio.astype(np.float32)
                if np.max(np.abs(audio)) > 1.0:
                    audio = audio / np.max(np.abs(audio))
                waveform = torch.tensor(audio).unsqueeze(0)
            else:
                waveform = audio.unsqueeze(0)
            
            # Resample if necessary
            if sr != 16000:
                waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000)
            
            with torch.no_grad():
                embedding = self.model.encode_batch(waveform)
                
            return embedding.squeeze().cpu().numpy()
        except Exception as e:
            logger.error(f"Error extracting embedding: {e}")
            return np.zeros(self.embedding_dim)


class AudioProcessor:
    """Processes audio data to extract speaker embeddings"""
    def __init__(self, encoder):
        self.encoder = encoder
        self.audio_buffer = []
        self.min_audio_length = int(SAMPLE_RATE * 1.0)  # Minimum 1 second of audio
    
    def add_audio_chunk(self, audio_chunk):
        """Add audio chunk to buffer"""
        self.audio_buffer.extend(audio_chunk)
        
        # Keep buffer from getting too large
        max_buffer_size = int(SAMPLE_RATE * 10)  # 10 seconds max
        if len(self.audio_buffer) > max_buffer_size:
            self.audio_buffer = self.audio_buffer[-max_buffer_size:]
    
    def extract_embedding_from_buffer(self):
        """Extract embedding from current audio buffer"""
        if len(self.audio_buffer) < self.min_audio_length:
            return None
            
        try:
            # Use the last portion of the buffer for embedding
            audio_segment = np.array(self.audio_buffer[-self.min_audio_length:], dtype=np.float32)
            
            # Normalize audio
            if np.max(np.abs(audio_segment)) > 0:
                audio_segment = audio_segment / np.max(np.abs(audio_segment))
            else:
                return None
            
            embedding = self.encoder.embed_utterance(audio_segment)
            return embedding
        except Exception as e:
            logger.error(f"Embedding extraction error: {e}")
            return None


class SpeakerChangeDetector:
    """Improved speaker change detector"""
    def __init__(self, embedding_dim=192, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS):
        self.embedding_dim = embedding_dim
        self.change_threshold = change_threshold
        self.max_speakers = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
        self.current_speaker = 0
        self.speaker_embeddings = [[] for _ in range(self.max_speakers)]
        self.speaker_centroids = [None] * self.max_speakers
        self.last_change_time = time.time()
        self.last_similarity = 1.0
        self.active_speakers = set([0])
        self.segment_counter = 0
        
    def set_max_speakers(self, max_speakers):
        """Update the maximum number of speakers"""
        new_max = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
        
        if new_max < self.max_speakers:
            # Remove speakers beyond the new limit
            for speaker_id in list(self.active_speakers):
                if speaker_id >= new_max:
                    self.active_speakers.discard(speaker_id)
            
            if self.current_speaker >= new_max:
                self.current_speaker = 0
        
        # Resize arrays
        if new_max > self.max_speakers:
            self.speaker_embeddings.extend([[] for _ in range(new_max - self.max_speakers)])
            self.speaker_centroids.extend([None] * (new_max - self.max_speakers))
        else:
            self.speaker_embeddings = self.speaker_embeddings[:new_max]
            self.speaker_centroids = self.speaker_centroids[:new_max]
        
        self.max_speakers = new_max
        
    def set_change_threshold(self, threshold):
        """Update the threshold for detecting speaker changes"""
        self.change_threshold = max(0.1, min(threshold, 0.95))
        
    def add_embedding(self, embedding, timestamp=None):
        """Add a new embedding and detect speaker changes"""
        current_time = timestamp or time.time()
        self.segment_counter += 1
        
        # Initialize first speaker
        if not self.speaker_embeddings[0]:
            self.speaker_embeddings[0].append(embedding)
            self.speaker_centroids[0] = embedding.copy()
            self.active_speakers.add(0)
            return 0, 1.0
        
        # Calculate similarity with current speaker
        current_centroid = self.speaker_centroids[self.current_speaker]
        if current_centroid is not None:
            similarity = 1.0 - cosine(embedding, current_centroid)
        else:
            similarity = 0.5
        
        self.last_similarity = similarity
        
        # Check for speaker change
        time_since_last_change = current_time - self.last_change_time
        speaker_changed = False
        
        if time_since_last_change >= MIN_SEGMENT_DURATION and similarity < self.change_threshold:
            # Find best matching speaker
            best_speaker = self.current_speaker
            best_similarity = similarity
            
            for speaker_id in self.active_speakers:
                if speaker_id == self.current_speaker:
                    continue
                    
                centroid = self.speaker_centroids[speaker_id]
                if centroid is not None:
                    speaker_similarity = 1.0 - cosine(embedding, centroid)
                    if speaker_similarity > best_similarity and speaker_similarity > self.change_threshold:
                        best_similarity = speaker_similarity
                        best_speaker = speaker_id
            
            # If no good match found and we can add a new speaker
            if best_speaker == self.current_speaker and len(self.active_speakers) < self.max_speakers:
                for new_id in range(self.max_speakers):
                    if new_id not in self.active_speakers:
                        best_speaker = new_id
                        self.active_speakers.add(new_id)
                        break
            
            if best_speaker != self.current_speaker:
                self.current_speaker = best_speaker
                self.last_change_time = current_time
                speaker_changed = True
        
        # Update speaker embeddings and centroids
        self.speaker_embeddings[self.current_speaker].append(embedding)
        
        # Keep only recent embeddings (sliding window)
        max_embeddings = 20
        if len(self.speaker_embeddings[self.current_speaker]) > max_embeddings:
            self.speaker_embeddings[self.current_speaker] = self.speaker_embeddings[self.current_speaker][-max_embeddings:]
        
        # Update centroid
        if self.speaker_embeddings[self.current_speaker]:
            self.speaker_centroids[self.current_speaker] = np.mean(
                self.speaker_embeddings[self.current_speaker], axis=0
            )
        
        return self.current_speaker, similarity
    
    def get_color_for_speaker(self, speaker_id):
        """Return color for speaker ID"""
        if 0 <= speaker_id < len(SPEAKER_COLORS):
            return SPEAKER_COLORS[speaker_id]
        return "#FFFFFF"
    
    def get_status_info(self):
        """Return status information"""
        speaker_counts = [len(self.speaker_embeddings[i]) for i in range(self.max_speakers)]
        
        return {
            "current_speaker": self.current_speaker,
            "speaker_counts": speaker_counts,
            "active_speakers": len(self.active_speakers),
            "max_speakers": self.max_speakers,
            "last_similarity": self.last_similarity,
            "threshold": self.change_threshold,
            "segment_counter": self.segment_counter
        }


class RealtimeSpeakerDiarization:
    def __init__(self):
        self.encoder = None
        self.audio_processor = None
        self.speaker_detector = None
        self.recorder = None  # RealtimeSTT recorder
        self.sentence_queue = queue.Queue()
        self.full_sentences = []
        self.sentence_speakers = []
        self.pending_sentences = []
        self.current_conversation = ""
        self.is_running = False
        self.change_threshold = DEFAULT_CHANGE_THRESHOLD
        self.max_speakers = DEFAULT_MAX_SPEAKERS
        self.last_transcription = ""
        self.transcription_lock = threading.Lock()
        
    def initialize_models(self):
        """Initialize the speaker encoder model"""
        try:
            device_str = "cuda" if torch.cuda.is_available() else "cpu"
            logger.info(f"Using device: {device_str}")
            
            self.encoder = SpeechBrainEncoder(device=device_str)
            success = self.encoder.load_model()
            
            if success:
                self.audio_processor = AudioProcessor(self.encoder)
                self.speaker_detector = SpeakerChangeDetector(
                    embedding_dim=self.encoder.embedding_dim,
                    change_threshold=self.change_threshold,
                    max_speakers=self.max_speakers
                )
                
                # Initialize RealtimeSTT transcription model
                self.recorder = AudioToTextRecorder(
                    spinner=False,
                    use_microphone=False,
                    model=FINAL_TRANSCRIPTION_MODEL,
                    language=TRANSCRIPTION_LANGUAGE,
                    silero_sensitivity=SILERO_SENSITIVITY,
                    webrtc_sensitivity=WEBRTC_SENSITIVITY,
                    post_speech_silence_duration=0.7,
                    min_length_of_recording=MIN_LENGTH_OF_RECORDING,
                    pre_recording_buffer_duration=PRE_RECORDING_BUFFER_DURATION,
                    enable_realtime_transcription=True,
                    realtime_processing_pause=0.2,
                    realtime_model_type=REALTIME_TRANSCRIPTION_MODEL,
                    on_realtime_transcription_update=self.live_text_detected,
                    on_recording_stop=self.process_final_text,
                    level=logging.WARNING,
                    # Don't start processing immediately
                    handle_buffer_overflow=True
                )
                
                logger.info("Models initialized successfully!")
                return True
            else:
                logger.error("Failed to load models")
                return False
        except Exception as e:
            logger.error(f"Model initialization error: {e}")
            return False
    
    def live_text_detected(self, text):
        """Callback for real-time transcription updates"""
        with self.transcription_lock:
            self.last_transcription = text.strip()
    
    def process_final_text(self, text):
        """Process final transcribed text with speaker embedding"""
        text = text.strip()
        if text:
            try:
                # Get audio data for this transcription
                audio_bytes = getattr(self.recorder, 'last_transcription_bytes', None)
                if audio_bytes:
                    self.sentence_queue.put((text, audio_bytes))
                else:
                    # If no audio bytes, use current speaker
                    self.sentence_queue.put((text, None))
                    
            except Exception as e:
                logger.error(f"Error processing final text: {e}")
    
    def process_sentence_queue(self):
        """Process sentences in the queue for speaker detection"""
        while self.is_running:
            try:
                text, audio_bytes = self.sentence_queue.get(timeout=1)
                
                current_speaker = self.speaker_detector.current_speaker
                
                if audio_bytes:
                    # Convert audio data and extract embedding
                    audio_int16 = np.frombuffer(audio_bytes, dtype=np.int16)
                    audio_float = audio_int16.astype(np.float32) / 32768.0
                    
                    # Extract embedding
                    embedding = self.audio_processor.encoder.embed_utterance(audio_float)
                    if embedding is not None:
                        current_speaker, similarity = self.speaker_detector.add_embedding(embedding)
                
                # Store sentence with speaker
                with self.transcription_lock:
                    self.full_sentences.append((text, current_speaker))
                    self.update_conversation_display()
                    
            except queue.Empty:
                continue
            except Exception as e:
                logger.error(f"Error processing sentence: {e}")
    
    def update_conversation_display(self):
        """Update the conversation display"""
        try:
            sentences_with_style = []
            
            for sentence_text, speaker_id in self.full_sentences:
                color = self.speaker_detector.get_color_for_speaker(speaker_id)
                speaker_name = f"Speaker {speaker_id + 1}"
                sentences_with_style.append(
                    f'<span style="color:{color}; font-weight: bold;">{speaker_name}:</span> '
                    f'<span style="color:#333333;">{sentence_text}</span>'
                )
            
            # Add current transcription if available
            if self.last_transcription:
                current_color = self.speaker_detector.get_color_for_speaker(self.speaker_detector.current_speaker)
                current_speaker = f"Speaker {self.speaker_detector.current_speaker + 1}"
                sentences_with_style.append(
                    f'<span style="color:{current_color}; font-weight: bold; opacity: 0.7;">{current_speaker}:</span> '
                    f'<span style="color:#666666; font-style: italic;">{self.last_transcription}...</span>'
                )
            
            if sentences_with_style:
                self.current_conversation = "<br><br>".join(sentences_with_style)
            else:
                self.current_conversation = "<i>Waiting for speech input...</i>"
                
        except Exception as e:
            logger.error(f"Error updating conversation display: {e}")
            self.current_conversation = f"<i>Error: {str(e)}</i>"
    
    def start_recording(self):
        """Start the recording and transcription process"""
        if self.encoder is None:
            return "Please initialize models first!"
        
        try:
            # Setup audio processor for speaker embeddings
            self.is_running = True
            
            # Start processing threads
            self.sentence_thread = threading.Thread(target=self.process_sentence_queue, daemon=True)
            self.sentence_thread.start()
            
            # Start the RealtimeSTT recorder explicitly
            if self.recorder:
                # First make sure it's stopped if it was running
                try:
                    if getattr(self.recorder, '_is_running', False):
                        self.recorder.stop()
                except Exception:
                    pass
                
                # Then start it fresh
                self.recorder.start()
                logger.info("RealtimeSTT recorder started")
            
            return "Recording started successfully!"
            
        except Exception as e:
            logger.error(f"Error starting recording: {e}")
            return f"Error starting recording: {e}"
    
    def stop_recording(self):
        """Stop the recording process"""
        self.is_running = False
        
        # Stop the RealtimeSTT recorder
        if self.recorder:
            try:
                self.recorder.stop()
                logger.info("RealtimeSTT recorder stopped")
                
                # Reset the last transcription
                with self.transcription_lock:
                    self.last_transcription = ""
            except Exception as e:
                logger.error(f"Error stopping recorder: {e}")
                
        return "Recording stopped!"
    
    def clear_conversation(self):
        """Clear all conversation data"""
        with self.transcription_lock:
            self.full_sentences = []
            self.last_transcription = ""
            self.current_conversation = "Conversation cleared!"
        
        if self.speaker_detector:
            self.speaker_detector = SpeakerChangeDetector(
                embedding_dim=self.encoder.embedding_dim,
                change_threshold=self.change_threshold,
                max_speakers=self.max_speakers
            )
        
        return "Conversation cleared!"
    
    def update_settings(self, threshold, max_speakers):
        """Update speaker detection settings"""
        self.change_threshold = threshold
        self.max_speakers = max_speakers
        
        if self.speaker_detector:
            self.speaker_detector.set_change_threshold(threshold)
            self.speaker_detector.set_max_speakers(max_speakers)
        
        return f"Settings updated: Threshold={threshold:.2f}, Max Speakers={max_speakers}"
    
    def get_formatted_conversation(self):
        """Get the formatted conversation with structured data"""
        try:
            # Create conversation HTML format as before
            html_content = self.current_conversation
            
            # Create structured data
            structured_data = {
                "html_content": html_content,
                "sentences": [],
                "current_transcript": self.last_transcription,
                "current_speaker": self.speaker_detector.current_speaker if self.speaker_detector else 0
            }
            
            # Add sentence data
            for sentence_text, speaker_id in self.full_sentences:
                color = self.speaker_detector.get_color_for_speaker(speaker_id) if self.speaker_detector else "#FFFFFF"
                structured_data["sentences"].append({
                    "text": sentence_text,
                    "speaker_id": speaker_id,
                    "speaker_name": f"Speaker {speaker_id + 1}",
                    "color": color
                })
            
            return html_content
        except Exception as e:
            logger.error(f"Error formatting conversation: {e}")
            return f"<i>Error formatting conversation: {str(e)}</i>"
    
    def get_status_info(self):
        """Get current status information as structured data"""
        if not self.speaker_detector:
            return {"error": "Speaker detector not initialized"}
        
        try:
            speaker_status = self.speaker_detector.get_status_info()
            
            # Format speaker activity
            speaker_activity = []
            for i in range(speaker_status['max_speakers']):
                color_name = SPEAKER_COLOR_NAMES[i] if i < len(SPEAKER_COLOR_NAMES) else f"Speaker {i+1}"
                count = speaker_status['speaker_counts'][i]
                active = count > 0
                speaker_activity.append({
                    "id": i,
                    "name": f"Speaker {i+1}",
                    "color": SPEAKER_COLORS[i] if i < len(SPEAKER_COLORS) else "#FFFFFF",
                    "color_name": color_name,
                    "segment_count": count,
                    "active": active
                })
            
            # Create structured status object
            status = {
                "current_speaker": speaker_status['current_speaker'],
                "current_speaker_name": f"Speaker {speaker_status['current_speaker'] + 1}",
                "active_speakers_count": speaker_status['active_speakers'],
                "max_speakers": speaker_status['max_speakers'],
                "last_similarity": speaker_status['last_similarity'],
                "change_threshold": speaker_status['threshold'],
                "total_sentences": len(self.full_sentences),
                "segments_processed": speaker_status['segment_counter'],
                "speaker_activity": speaker_activity,
                "timestamp": time.time()
            }
            
            # Also create a formatted text version for UI display
            status_lines = [
                f"**Current Speaker:** {status['current_speaker'] + 1}",
                f"**Active Speakers:** {status['active_speakers_count']} of {status['max_speakers']}",
                f"**Last Similarity:** {status['last_similarity']:.3f}",
                f"**Change Threshold:** {status['change_threshold']:.2f}",
                f"**Total Sentences:** {status['total_sentences']}",
                f"**Segments Processed:** {status['segments_processed']}",
                "",
                "**Speaker Activity:**"
            ]
            
            for speaker in status["speaker_activity"]:
                active = "🟢" if speaker["active"] else "⚫"
                status_lines.append(f"{active} Speaker {speaker['id']+1} ({speaker['color_name']}): {speaker['segment_count']} segments")
            
            status["formatted_text"] = "\n".join(status_lines)
            
            return status
            
        except Exception as e:
            error_msg = f"Error getting status: {e}"
            logger.error(error_msg)
            return {"error": error_msg, "formatted_text": error_msg}

    def process_audio_chunk(self, audio_data, sample_rate=16000):
        """Process audio chunk from WebSocket input"""
        if not self.is_running or self.audio_processor is None:
            return {"status": "not_running"}
            
        try:
            # Convert bytes to numpy array if needed
            if isinstance(audio_data, bytes):
                audio_data = np.frombuffer(audio_data, dtype=np.int16).astype(np.float32) / 32768.0
            
            # Ensure audio is float32
            if isinstance(audio_data, np.ndarray):
                if audio_data.dtype != np.float32:
                    audio_data = audio_data.astype(np.float32)
            else:
                audio_data = np.array(audio_data, dtype=np.float32)
            
            # Ensure mono
            if len(audio_data.shape) > 1:
                audio_data = np.mean(audio_data, axis=1) if audio_data.shape[1] > 1 else audio_data.flatten()
            
            # Check if audio has meaningful content (not just silence)
            audio_level = np.abs(audio_data).mean()
            is_silence = audio_level < 0.01  # Threshold for silence
            
            # Skip processing for silent audio
            if is_silence:
                return {
                    "status": "silent",
                    "buffer_size": len(self.audio_processor.audio_buffer),
                    "speaker_id": self.speaker_detector.current_speaker,
                    "conversation_html": self.current_conversation
                }
            
            # Normalize if needed
            if np.max(np.abs(audio_data)) > 1.0:
                audio_data = audio_data / np.max(np.abs(audio_data))
            
            # Add to audio processor buffer for speaker detection
            self.audio_processor.add_audio_chunk(audio_data)
            
            # Feed to RealtimeSTT for transcription
            if self.recorder:
                # Convert to int16 for RealtimeSTT
                audio_int16 = (audio_data * 32768).astype(np.int16)
                self.recorder.feed_audio(audio_int16.tobytes())
            
            # Periodically extract embeddings for speaker detection
            embedding = None
            speaker_id = self.speaker_detector.current_speaker
            similarity = 1.0
            
            if len(self.audio_processor.audio_buffer) >= SAMPLE_RATE and (len(self.audio_processor.audio_buffer) - SAMPLE_RATE) % (SAMPLE_RATE // 2)==0:
                embedding = self.audio_processor.extract_embedding_from_buffer()
                if embedding is not None:
                    speaker_id, similarity = self.speaker_detector.add_embedding(embedding)
            
            # Return processing result
            return {
                "status": "processed",
                "buffer_size": len(self.audio_processor.audio_buffer),
                "speaker_id": int(speaker_id) if not isinstance(speaker_id, int) else speaker_id,
                "similarity": float(similarity) if embedding is not None and not isinstance(similarity, float) else similarity,
                "conversation_html": self.current_conversation
            }
                    
        except Exception as e:
            logger.error(f"Error processing audio chunk: {e}")
            return {"status": "error", "message": str(e)}
    
    def resample_audio(self, audio_bytes, from_rate, to_rate):
        """Resample audio to target sample rate"""
        try:
            audio_np = np.frombuffer(audio_bytes, dtype=np.int16)
            num_samples = len(audio_np)
            num_target_samples = int(num_samples * to_rate / from_rate)
            
            resampled = resample(audio_np, num_target_samples)
            
            return resampled.astype(np.int16).tobytes()
        except Exception as e:
            logger.error(f"Error resampling audio: {e}")
            return audio_bytes