Spaces:
Running
Running
File size: 28,980 Bytes
97a4ae5 f4275bf 97a4ae5 f4275bf 97a4ae5 f4275bf 97a4ae5 f4275bf 97a4ae5 f4275bf f722385 f4275bf 5c73715 99ecc54 f722385 99ecc54 f722385 f4275bf 97a4ae5 99ecc54 f4275bf 97a4ae5 f4275bf 99ecc54 f4275bf 97a4ae5 4e75e2b 97a4ae5 4e75e2b 97a4ae5 4e75e2b 97a4ae5 4e75e2b 97a4ae5 4e75e2b 97a4ae5 4e75e2b 97a4ae5 4e75e2b 97a4ae5 4e75e2b 97a4ae5 4e75e2b 97a4ae5 4e75e2b 97a4ae5 4e75e2b 97a4ae5 99ecc54 97a4ae5 f4275bf 97a4ae5 4e75e2b ffa6f25 97a4ae5 4e75e2b e0cfbe7 4e75e2b bd39e10 e0cfbe7 4e75e2b 97a4ae5 4e75e2b 97a4ae5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 |
import numpy as np
import torch
import time
import threading
import os
import queue
import torchaudio
from scipy.spatial.distance import cosine
from scipy.signal import resample
import logging
import urllib.request
# Import RealtimeSTT for transcription
from RealtimeSTT import AudioToTextRecorder
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Simplified configuration parameters
SILENCE_THRESHS = [0, 0.4]
FINAL_TRANSCRIPTION_MODEL = "distil-large-v3"
FINAL_BEAM_SIZE = 5
REALTIME_TRANSCRIPTION_MODEL = "distil-small.en"
REALTIME_BEAM_SIZE = 5
TRANSCRIPTION_LANGUAGE = "en"
SILERO_SENSITIVITY = 0.4
WEBRTC_SENSITIVITY = 3
MIN_LENGTH_OF_RECORDING = 0.7
PRE_RECORDING_BUFFER_DURATION = 0.35
# Speaker change detection parameters
DEFAULT_CHANGE_THRESHOLD = 0.65
EMBEDDING_HISTORY_SIZE = 5
MIN_SEGMENT_DURATION = 1.5
DEFAULT_MAX_SPEAKERS = 4
ABSOLUTE_MAX_SPEAKERS = 8
# Global variables
SAMPLE_RATE = 16000
BUFFER_SIZE = 1024
CHANNELS = 1
# Speaker colors - more distinguishable colors
SPEAKER_COLORS = [
"#FF6B6B", # Red
"#4ECDC4", # Teal
"#45B7D1", # Blue
"#96CEB4", # Green
"#FFEAA7", # Yellow
"#DDA0DD", # Plum
"#98D8C8", # Mint
"#F7DC6F", # Gold
]
SPEAKER_COLOR_NAMES = [
"Red", "Teal", "Blue", "Green", "Yellow", "Plum", "Mint", "Gold"
]
class SpeechBrainEncoder:
"""ECAPA-TDNN encoder from SpeechBrain for speaker embeddings"""
def __init__(self, device="cpu"):
self.device = device
self.model = None
self.embedding_dim = 192
self.model_loaded = False
self.cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "speechbrain")
os.makedirs(self.cache_dir, exist_ok=True)
def _download_model(self):
"""Download pre-trained SpeechBrain ECAPA-TDNN model if not present"""
model_url = "https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb/resolve/main/embedding_model.ckpt"
model_path = os.path.join(self.cache_dir, "embedding_model.ckpt")
if not os.path.exists(model_path):
print(f"Downloading ECAPA-TDNN model to {model_path}...")
urllib.request.urlretrieve(model_url, model_path)
return model_path
def load_model(self):
"""Load the ECAPA-TDNN model"""
try:
# Import SpeechBrain
from speechbrain.pretrained import EncoderClassifier
# Get model path
model_path = self._download_model()
# Load the pre-trained model
self.model = EncoderClassifier.from_hparams(
source="speechbrain/spkrec-ecapa-voxceleb",
savedir=self.cache_dir,
run_opts={"device": self.device}
)
self.model_loaded = True
return True
except Exception as e:
print(f"Error loading ECAPA-TDNN model: {e}")
return False
def embed_utterance(self, audio, sr=16000):
"""Extract speaker embedding from audio"""
if not self.model_loaded:
raise ValueError("Model not loaded. Call load_model() first.")
try:
if isinstance(audio, np.ndarray):
# Ensure audio is float32 and properly normalized
audio = audio.astype(np.float32)
if np.max(np.abs(audio)) > 1.0:
audio = audio / np.max(np.abs(audio))
waveform = torch.tensor(audio).unsqueeze(0)
else:
waveform = audio.unsqueeze(0)
# Resample if necessary
if sr != 16000:
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000)
with torch.no_grad():
embedding = self.model.encode_batch(waveform)
return embedding.squeeze().cpu().numpy()
except Exception as e:
logger.error(f"Error extracting embedding: {e}")
return np.zeros(self.embedding_dim)
class AudioProcessor:
"""Processes audio data to extract speaker embeddings"""
def __init__(self, encoder):
self.encoder = encoder
self.audio_buffer = []
self.min_audio_length = int(SAMPLE_RATE * 1.0) # Minimum 1 second of audio
def add_audio_chunk(self, audio_chunk):
"""Add audio chunk to buffer"""
self.audio_buffer.extend(audio_chunk)
# Keep buffer from getting too large
max_buffer_size = int(SAMPLE_RATE * 10) # 10 seconds max
if len(self.audio_buffer) > max_buffer_size:
self.audio_buffer = self.audio_buffer[-max_buffer_size:]
def extract_embedding_from_buffer(self):
"""Extract embedding from current audio buffer"""
if len(self.audio_buffer) < self.min_audio_length:
return None
try:
# Use the last portion of the buffer for embedding
audio_segment = np.array(self.audio_buffer[-self.min_audio_length:], dtype=np.float32)
# Normalize audio
if np.max(np.abs(audio_segment)) > 0:
audio_segment = audio_segment / np.max(np.abs(audio_segment))
else:
return None
embedding = self.encoder.embed_utterance(audio_segment)
return embedding
except Exception as e:
logger.error(f"Embedding extraction error: {e}")
return None
class SpeakerChangeDetector:
"""Improved speaker change detector"""
def __init__(self, embedding_dim=192, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS):
self.embedding_dim = embedding_dim
self.change_threshold = change_threshold
self.max_speakers = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
self.current_speaker = 0
self.speaker_embeddings = [[] for _ in range(self.max_speakers)]
self.speaker_centroids = [None] * self.max_speakers
self.last_change_time = time.time()
self.last_similarity = 1.0
self.active_speakers = set([0])
self.segment_counter = 0
def set_max_speakers(self, max_speakers):
"""Update the maximum number of speakers"""
new_max = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
if new_max < self.max_speakers:
# Remove speakers beyond the new limit
for speaker_id in list(self.active_speakers):
if speaker_id >= new_max:
self.active_speakers.discard(speaker_id)
if self.current_speaker >= new_max:
self.current_speaker = 0
# Resize arrays
if new_max > self.max_speakers:
self.speaker_embeddings.extend([[] for _ in range(new_max - self.max_speakers)])
self.speaker_centroids.extend([None] * (new_max - self.max_speakers))
else:
self.speaker_embeddings = self.speaker_embeddings[:new_max]
self.speaker_centroids = self.speaker_centroids[:new_max]
self.max_speakers = new_max
def set_change_threshold(self, threshold):
"""Update the threshold for detecting speaker changes"""
self.change_threshold = max(0.1, min(threshold, 0.95))
def add_embedding(self, embedding, timestamp=None):
"""Add a new embedding and detect speaker changes"""
current_time = timestamp or time.time()
self.segment_counter += 1
# Initialize first speaker
if not self.speaker_embeddings[0]:
self.speaker_embeddings[0].append(embedding)
self.speaker_centroids[0] = embedding.copy()
self.active_speakers.add(0)
return 0, 1.0
# Calculate similarity with current speaker
current_centroid = self.speaker_centroids[self.current_speaker]
if current_centroid is not None:
similarity = 1.0 - cosine(embedding, current_centroid)
else:
similarity = 0.5
self.last_similarity = similarity
# Check for speaker change
time_since_last_change = current_time - self.last_change_time
speaker_changed = False
if time_since_last_change >= MIN_SEGMENT_DURATION and similarity < self.change_threshold:
# Find best matching speaker
best_speaker = self.current_speaker
best_similarity = similarity
for speaker_id in self.active_speakers:
if speaker_id == self.current_speaker:
continue
centroid = self.speaker_centroids[speaker_id]
if centroid is not None:
speaker_similarity = 1.0 - cosine(embedding, centroid)
if speaker_similarity > best_similarity and speaker_similarity > self.change_threshold:
best_similarity = speaker_similarity
best_speaker = speaker_id
# If no good match found and we can add a new speaker
if best_speaker == self.current_speaker and len(self.active_speakers) < self.max_speakers:
for new_id in range(self.max_speakers):
if new_id not in self.active_speakers:
best_speaker = new_id
self.active_speakers.add(new_id)
break
if best_speaker != self.current_speaker:
self.current_speaker = best_speaker
self.last_change_time = current_time
speaker_changed = True
# Update speaker embeddings and centroids
self.speaker_embeddings[self.current_speaker].append(embedding)
# Keep only recent embeddings (sliding window)
max_embeddings = 20
if len(self.speaker_embeddings[self.current_speaker]) > max_embeddings:
self.speaker_embeddings[self.current_speaker] = self.speaker_embeddings[self.current_speaker][-max_embeddings:]
# Update centroid
if self.speaker_embeddings[self.current_speaker]:
self.speaker_centroids[self.current_speaker] = np.mean(
self.speaker_embeddings[self.current_speaker], axis=0
)
return self.current_speaker, similarity
def get_color_for_speaker(self, speaker_id):
"""Return color for speaker ID"""
if 0 <= speaker_id < len(SPEAKER_COLORS):
return SPEAKER_COLORS[speaker_id]
return "#FFFFFF"
def get_status_info(self):
"""Return status information"""
speaker_counts = [len(self.speaker_embeddings[i]) for i in range(self.max_speakers)]
return {
"current_speaker": self.current_speaker,
"speaker_counts": speaker_counts,
"active_speakers": len(self.active_speakers),
"max_speakers": self.max_speakers,
"last_similarity": self.last_similarity,
"threshold": self.change_threshold,
"segment_counter": self.segment_counter
}
class RealtimeSpeakerDiarization:
def __init__(self):
self.encoder = None
self.audio_processor = None
self.speaker_detector = None
self.recorder = None # RealtimeSTT recorder
self.sentence_queue = queue.Queue()
self.full_sentences = []
self.sentence_speakers = []
self.pending_sentences = []
self.current_conversation = ""
self.is_running = False
self.change_threshold = DEFAULT_CHANGE_THRESHOLD
self.max_speakers = DEFAULT_MAX_SPEAKERS
self.last_transcription = ""
self.transcription_lock = threading.Lock()
def initialize_models(self):
"""Initialize the speaker encoder model"""
try:
device_str = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Using device: {device_str}")
self.encoder = SpeechBrainEncoder(device=device_str)
success = self.encoder.load_model()
if success:
self.audio_processor = AudioProcessor(self.encoder)
self.speaker_detector = SpeakerChangeDetector(
embedding_dim=self.encoder.embedding_dim,
change_threshold=self.change_threshold,
max_speakers=self.max_speakers
)
# Initialize RealtimeSTT transcription model
self.recorder = AudioToTextRecorder(
spinner=False,
use_microphone=False,
model=FINAL_TRANSCRIPTION_MODEL,
language=TRANSCRIPTION_LANGUAGE,
silero_sensitivity=SILERO_SENSITIVITY,
webrtc_sensitivity=WEBRTC_SENSITIVITY,
post_speech_silence_duration=0.7,
min_length_of_recording=MIN_LENGTH_OF_RECORDING,
pre_recording_buffer_duration=PRE_RECORDING_BUFFER_DURATION,
enable_realtime_transcription=True,
realtime_processing_pause=0.2,
realtime_model_type=REALTIME_TRANSCRIPTION_MODEL,
on_realtime_transcription_update=self.live_text_detected,
on_recording_stop=self.process_final_text,
level=logging.WARNING,
# Don't start processing immediately
handle_buffer_overflow=True
)
logger.info("Models initialized successfully!")
return True
else:
logger.error("Failed to load models")
return False
except Exception as e:
logger.error(f"Model initialization error: {e}")
return False
def live_text_detected(self, text):
"""Callback for real-time transcription updates"""
with self.transcription_lock:
self.last_transcription = text.strip()
def process_final_text(self, text):
"""Process final transcribed text with speaker embedding"""
text = text.strip()
if text:
try:
# Get audio data for this transcription
audio_bytes = getattr(self.recorder, 'last_transcription_bytes', None)
if audio_bytes:
self.sentence_queue.put((text, audio_bytes))
else:
# If no audio bytes, use current speaker
self.sentence_queue.put((text, None))
except Exception as e:
logger.error(f"Error processing final text: {e}")
def process_sentence_queue(self):
"""Process sentences in the queue for speaker detection"""
while self.is_running:
try:
text, audio_bytes = self.sentence_queue.get(timeout=1)
current_speaker = self.speaker_detector.current_speaker
if audio_bytes:
# Convert audio data and extract embedding
audio_int16 = np.frombuffer(audio_bytes, dtype=np.int16)
audio_float = audio_int16.astype(np.float32) / 32768.0
# Extract embedding
embedding = self.audio_processor.encoder.embed_utterance(audio_float)
if embedding is not None:
current_speaker, similarity = self.speaker_detector.add_embedding(embedding)
# Store sentence with speaker
with self.transcription_lock:
self.full_sentences.append((text, current_speaker))
self.update_conversation_display()
except queue.Empty:
continue
except Exception as e:
logger.error(f"Error processing sentence: {e}")
def update_conversation_display(self):
"""Update the conversation display"""
try:
sentences_with_style = []
for sentence_text, speaker_id in self.full_sentences:
color = self.speaker_detector.get_color_for_speaker(speaker_id)
speaker_name = f"Speaker {speaker_id + 1}"
sentences_with_style.append(
f'<span style="color:{color}; font-weight: bold;">{speaker_name}:</span> '
f'<span style="color:#333333;">{sentence_text}</span>'
)
# Add current transcription if available
if self.last_transcription:
current_color = self.speaker_detector.get_color_for_speaker(self.speaker_detector.current_speaker)
current_speaker = f"Speaker {self.speaker_detector.current_speaker + 1}"
sentences_with_style.append(
f'<span style="color:{current_color}; font-weight: bold; opacity: 0.7;">{current_speaker}:</span> '
f'<span style="color:#666666; font-style: italic;">{self.last_transcription}...</span>'
)
if sentences_with_style:
self.current_conversation = "<br><br>".join(sentences_with_style)
else:
self.current_conversation = "<i>Waiting for speech input...</i>"
except Exception as e:
logger.error(f"Error updating conversation display: {e}")
self.current_conversation = f"<i>Error: {str(e)}</i>"
def start_recording(self):
"""Start the recording and transcription process"""
if self.encoder is None:
return "Please initialize models first!"
try:
# Setup audio processor for speaker embeddings
self.is_running = True
# Start processing threads
self.sentence_thread = threading.Thread(target=self.process_sentence_queue, daemon=True)
self.sentence_thread.start()
# Start the RealtimeSTT recorder explicitly
if self.recorder:
# First make sure it's stopped if it was running
try:
if getattr(self.recorder, '_is_running', False):
self.recorder.stop()
except Exception:
pass
# Then start it fresh
self.recorder.start()
logger.info("RealtimeSTT recorder started")
return "Recording started successfully!"
except Exception as e:
logger.error(f"Error starting recording: {e}")
return f"Error starting recording: {e}"
def stop_recording(self):
"""Stop the recording process"""
self.is_running = False
# Stop the RealtimeSTT recorder
if self.recorder:
try:
self.recorder.stop()
logger.info("RealtimeSTT recorder stopped")
# Reset the last transcription
with self.transcription_lock:
self.last_transcription = ""
except Exception as e:
logger.error(f"Error stopping recorder: {e}")
return "Recording stopped!"
def clear_conversation(self):
"""Clear all conversation data"""
with self.transcription_lock:
self.full_sentences = []
self.last_transcription = ""
self.current_conversation = "Conversation cleared!"
if self.speaker_detector:
self.speaker_detector = SpeakerChangeDetector(
embedding_dim=self.encoder.embedding_dim,
change_threshold=self.change_threshold,
max_speakers=self.max_speakers
)
return "Conversation cleared!"
def update_settings(self, threshold, max_speakers):
"""Update speaker detection settings"""
self.change_threshold = threshold
self.max_speakers = max_speakers
if self.speaker_detector:
self.speaker_detector.set_change_threshold(threshold)
self.speaker_detector.set_max_speakers(max_speakers)
return f"Settings updated: Threshold={threshold:.2f}, Max Speakers={max_speakers}"
def get_formatted_conversation(self):
"""Get the formatted conversation with structured data"""
try:
# Create conversation HTML format as before
html_content = self.current_conversation
# Create structured data
structured_data = {
"html_content": html_content,
"sentences": [],
"current_transcript": self.last_transcription,
"current_speaker": self.speaker_detector.current_speaker if self.speaker_detector else 0
}
# Add sentence data
for sentence_text, speaker_id in self.full_sentences:
color = self.speaker_detector.get_color_for_speaker(speaker_id) if self.speaker_detector else "#FFFFFF"
structured_data["sentences"].append({
"text": sentence_text,
"speaker_id": speaker_id,
"speaker_name": f"Speaker {speaker_id + 1}",
"color": color
})
return html_content
except Exception as e:
logger.error(f"Error formatting conversation: {e}")
return f"<i>Error formatting conversation: {str(e)}</i>"
def get_status_info(self):
"""Get current status information as structured data"""
if not self.speaker_detector:
return {"error": "Speaker detector not initialized"}
try:
speaker_status = self.speaker_detector.get_status_info()
# Format speaker activity
speaker_activity = []
for i in range(speaker_status['max_speakers']):
color_name = SPEAKER_COLOR_NAMES[i] if i < len(SPEAKER_COLOR_NAMES) else f"Speaker {i+1}"
count = speaker_status['speaker_counts'][i]
active = count > 0
speaker_activity.append({
"id": i,
"name": f"Speaker {i+1}",
"color": SPEAKER_COLORS[i] if i < len(SPEAKER_COLORS) else "#FFFFFF",
"color_name": color_name,
"segment_count": count,
"active": active
})
# Create structured status object
status = {
"current_speaker": speaker_status['current_speaker'],
"current_speaker_name": f"Speaker {speaker_status['current_speaker'] + 1}",
"active_speakers_count": speaker_status['active_speakers'],
"max_speakers": speaker_status['max_speakers'],
"last_similarity": speaker_status['last_similarity'],
"change_threshold": speaker_status['threshold'],
"total_sentences": len(self.full_sentences),
"segments_processed": speaker_status['segment_counter'],
"speaker_activity": speaker_activity,
"timestamp": time.time()
}
# Also create a formatted text version for UI display
status_lines = [
f"**Current Speaker:** {status['current_speaker'] + 1}",
f"**Active Speakers:** {status['active_speakers_count']} of {status['max_speakers']}",
f"**Last Similarity:** {status['last_similarity']:.3f}",
f"**Change Threshold:** {status['change_threshold']:.2f}",
f"**Total Sentences:** {status['total_sentences']}",
f"**Segments Processed:** {status['segments_processed']}",
"",
"**Speaker Activity:**"
]
for speaker in status["speaker_activity"]:
active = "🟢" if speaker["active"] else "⚫"
status_lines.append(f"{active} Speaker {speaker['id']+1} ({speaker['color_name']}): {speaker['segment_count']} segments")
status["formatted_text"] = "\n".join(status_lines)
return status
except Exception as e:
error_msg = f"Error getting status: {e}"
logger.error(error_msg)
return {"error": error_msg, "formatted_text": error_msg}
def process_audio_chunk(self, audio_data, sample_rate=16000):
"""Process audio chunk from WebSocket input"""
if not self.is_running or self.audio_processor is None:
return {"status": "not_running"}
try:
# Convert bytes to numpy array if needed
if isinstance(audio_data, bytes):
audio_data = np.frombuffer(audio_data, dtype=np.int16).astype(np.float32) / 32768.0
# Ensure audio is float32
if isinstance(audio_data, np.ndarray):
if audio_data.dtype != np.float32:
audio_data = audio_data.astype(np.float32)
else:
audio_data = np.array(audio_data, dtype=np.float32)
# Ensure mono
if len(audio_data.shape) > 1:
audio_data = np.mean(audio_data, axis=1) if audio_data.shape[1] > 1 else audio_data.flatten()
# Check if audio has meaningful content (not just silence)
audio_level = np.abs(audio_data).mean()
is_silence = audio_level < 0.01 # Threshold for silence
# Skip processing for silent audio
if is_silence:
return {
"status": "silent",
"buffer_size": len(self.audio_processor.audio_buffer),
"speaker_id": self.speaker_detector.current_speaker,
"conversation_html": self.current_conversation
}
# Normalize if needed
if np.max(np.abs(audio_data)) > 1.0:
audio_data = audio_data / np.max(np.abs(audio_data))
# Add to audio processor buffer for speaker detection
self.audio_processor.add_audio_chunk(audio_data)
# Feed to RealtimeSTT for transcription
if self.recorder:
# Convert to int16 for RealtimeSTT
audio_int16 = (audio_data * 32768).astype(np.int16)
self.recorder.feed_audio(audio_int16.tobytes())
# Periodically extract embeddings for speaker detection
embedding = None
speaker_id = self.speaker_detector.current_speaker
similarity = 1.0
if len(self.audio_processor.audio_buffer) >= SAMPLE_RATE and (len(self.audio_processor.audio_buffer) - SAMPLE_RATE) % (SAMPLE_RATE // 2)==0:
embedding = self.audio_processor.extract_embedding_from_buffer()
if embedding is not None:
speaker_id, similarity = self.speaker_detector.add_embedding(embedding)
# Return processing result
return {
"status": "processed",
"buffer_size": len(self.audio_processor.audio_buffer),
"speaker_id": int(speaker_id) if not isinstance(speaker_id, int) else speaker_id,
"similarity": float(similarity) if embedding is not None and not isinstance(similarity, float) else similarity,
"conversation_html": self.current_conversation
}
except Exception as e:
logger.error(f"Error processing audio chunk: {e}")
return {"status": "error", "message": str(e)}
def resample_audio(self, audio_bytes, from_rate, to_rate):
"""Resample audio to target sample rate"""
try:
audio_np = np.frombuffer(audio_bytes, dtype=np.int16)
num_samples = len(audio_np)
num_target_samples = int(num_samples * to_rate / from_rate)
resampled = resample(audio_np, num_target_samples)
return resampled.astype(np.int16).tobytes()
except Exception as e:
logger.error(f"Error resampling audio: {e}")
return audio_bytes |