Spaces:
Configuration error
Configuration error
File size: 16,641 Bytes
8dc9718 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
# coding: utf-8
"""
The entrance of the gradio
"""
import os
import pdb
import gradio as gr
import os.path as osp
from omegaconf import OmegaConf
from src.pipelines.gradio_live_portrait_pipeline import GradioLivePortraitPipeline
def load_description(fp):
with open(fp, 'r', encoding='utf-8') as f:
content = f.read()
return content
import argparse
parser = argparse.ArgumentParser(description='Faster Live Portrait Pipeline')
parser.add_argument('--mode', required=False, type=str, default="onnx")
parser.add_argument('--use_mp', action='store_true', help='use mediapipe or not')
parser.add_argument(
"--host_ip", type=str, default="127.0.0.1", help="host ip"
)
parser.add_argument("--port", type=int, default=9870, help="server port")
args, unknown = parser.parse_known_args()
if args.mode == "onnx":
cfg_path = "configs/onnx_mp_infer.yaml" if args.use_mp else "configs/onnx_infer.yaml"
else:
cfg_path = "configs/trt_mp_infer.yaml" if args.use_mp else "configs/trt_infer.yaml"
infer_cfg = OmegaConf.load(cfg_path)
gradio_pipeline = GradioLivePortraitPipeline(infer_cfg)
def gpu_wrapped_execute_video(*args, **kwargs):
return gradio_pipeline.execute_video(*args, **kwargs)
def gpu_wrapped_execute_image(*args, **kwargs):
return gradio_pipeline.execute_image(*args, **kwargs)
def change_animal_model(is_animal):
global gradio_pipeline
gradio_pipeline.clean_models()
gradio_pipeline.init_models(is_animal=is_animal)
# assets
title_md = "assets/gradio/gradio_title.md"
example_portrait_dir = "assets/examples/source"
example_video_dir = "assets/examples/driving"
#################### interface logic ####################
# Define components first
eye_retargeting_slider = gr.Slider(minimum=0, maximum=0.8, step=0.01, label="target eyes-open ratio")
lip_retargeting_slider = gr.Slider(minimum=0, maximum=0.8, step=0.01, label="target lip-open ratio")
retargeting_input_image = gr.Image(type="filepath")
output_image = gr.Image(format="png", type="numpy")
output_image_paste_back = gr.Image(format="png", type="numpy")
js_func = """
function refresh() {
const url = new URL(window.location);
if (url.searchParams.get('__theme') !== 'dark') {
url.searchParams.set('__theme', 'dark');
window.location.href = url.href;
}
}
"""
with gr.Blocks(theme=gr.themes.Soft(font=[gr.themes.GoogleFont("Plus Jakarta Sans")]), js=js_func) as demo:
gr.HTML(load_description(title_md))
gr.Markdown(load_description("assets/gradio/gradio_description_upload.md"))
with gr.Row():
with gr.Column():
with gr.Tabs():
with gr.TabItem("๐ผ๏ธ Source Image") as tab_image:
with gr.Accordion(open=True, label="Source Image"):
source_image_input = gr.Image(type="filepath")
gr.Examples(
examples=[
[osp.join(example_portrait_dir, "s9.jpg")],
[osp.join(example_portrait_dir, "s6.jpg")],
[osp.join(example_portrait_dir, "s10.jpg")],
[osp.join(example_portrait_dir, "s5.jpg")],
[osp.join(example_portrait_dir, "s7.jpg")],
[osp.join(example_portrait_dir, "s12.jpg")],
],
inputs=[source_image_input],
cache_examples=False,
)
with gr.TabItem("๐๏ธ Source Video") as tab_video:
with gr.Accordion(open=True, label="Source Video"):
source_video_input = gr.Video()
gr.Examples(
examples=[
[osp.join(example_video_dir, "d9.mp4")],
[osp.join(example_video_dir, "d10.mp4")],
[osp.join(example_video_dir, "d11.mp4")],
[osp.join(example_video_dir, "d12.mp4")],
[osp.join(example_video_dir, "d13.mp4")],
[osp.join(example_video_dir, "d14.mp4")],
],
inputs=[source_video_input],
cache_examples=False,
)
tab_selection = gr.Textbox(visible=False)
tab_image.select(lambda: "Image", None, tab_selection)
tab_video.select(lambda: "Video", None, tab_selection)
with gr.Accordion(open=True, label="Cropping Options for Source Image or Video"):
with gr.Row():
flag_do_crop_input = gr.Checkbox(value=True, label="do crop (source)")
scale = gr.Number(value=2.3, label="source crop scale", minimum=1.8, maximum=3.2, step=0.05)
vx_ratio = gr.Number(value=0.0, label="source crop x", minimum=-0.5, maximum=0.5, step=0.01)
vy_ratio = gr.Number(value=-0.125, label="source crop y", minimum=-0.5, maximum=0.5, step=0.01)
with gr.Column():
with gr.Tabs():
with gr.TabItem("๐๏ธ Driving Video") as v_tab_video:
with gr.Accordion(open=True, label="Driving Video"):
driving_video_input = gr.Video()
gr.Examples(
examples=[
[osp.join(example_video_dir, "d9.mp4")],
[osp.join(example_video_dir, "d10.mp4")],
[osp.join(example_video_dir, "d11.mp4")],
[osp.join(example_video_dir, "d12.mp4")],
[osp.join(example_video_dir, "d13.mp4")],
[osp.join(example_video_dir, "d14.mp4")],
],
inputs=[driving_video_input],
cache_examples=False,
)
with gr.TabItem("๐ผ๏ธ Driving Image") as v_tab_image:
with gr.Accordion(open=True, label="Driving Image"):
driving_image_input = gr.Image(type="filepath")
gr.Examples(
examples=[
[osp.join(example_portrait_dir, "s9.jpg")],
[osp.join(example_portrait_dir, "s6.jpg")],
[osp.join(example_portrait_dir, "s10.jpg")],
[osp.join(example_portrait_dir, "s5.jpg")],
[osp.join(example_portrait_dir, "s7.jpg")],
[osp.join(example_portrait_dir, "s12.jpg")],
],
inputs=[driving_image_input],
cache_examples=False,
)
with gr.TabItem("๐ Driving Pickle") as v_tab_pickle:
with gr.Accordion(open=True, label="Driving Pickle"):
driving_pickle_input = gr.File(type="filepath", file_types=[".pkl"])
gr.Examples(
examples=[
[osp.join(example_video_dir, "d2.pkl")],
[osp.join(example_video_dir, "d8.pkl")],
],
inputs=[driving_pickle_input],
cache_examples=False,
)
with gr.TabItem("๐ต Driving Audio") as v_tab_audio:
with gr.Accordion(open=True, label="Driving Audio"):
driving_audio_input = gr.Audio(
value=None,
type="filepath",
interactive=True,
show_label=False,
waveform_options=gr.WaveformOptions(
sample_rate=24000,
),
)
gr.Examples(
examples=[
[osp.join(example_video_dir, "a-01.wav")],
],
inputs=[driving_audio_input],
cache_examples=False,
)
with gr.TabItem("๐Driving Text") as v_tab_text:
with gr.Accordion(open=True, label="Driving Text"):
driving_text_input = gr.Textbox(value="Hi, I am created by Faster LivePortrait!",
label="Driving Text")
voice_dir = "checkpoints/Kokoro-82M/voices/"
voice_names = [os.path.splitext(vname)[0] for vname in os.listdir(voice_dir) if vname.endswith(".pt")]
voice_name = gr.Dropdown(
choices=voice_names, value='af_heart', label="Voice Name")
v_tab_selection = gr.Textbox(value="Video", visible=False)
v_tab_video.select(lambda: "Video", None, v_tab_selection)
v_tab_image.select(lambda: "Image", None, v_tab_selection)
v_tab_pickle.select(lambda: "Pickle", None, v_tab_selection)
v_tab_audio.select(lambda: "Audio", None, v_tab_selection)
v_tab_text.select(lambda: "Text", None, v_tab_selection)
# with gr.Accordion(open=False, label="Animation Instructions"):
# gr.Markdown(load_description("assets/gradio/gradio_description_animation.md"))
with gr.Accordion(open=True, label="Cropping Options for Driving Video"):
with gr.Row():
flag_crop_driving_video_input = gr.Checkbox(value=False, label="do crop (driving)")
scale_crop_driving_video = gr.Number(value=2.2, label="driving crop scale", minimum=1.8,
maximum=3.2, step=0.05)
vx_ratio_crop_driving_video = gr.Number(value=0.0, label="driving crop x", minimum=-0.5,
maximum=0.5, step=0.01)
vy_ratio_crop_driving_video = gr.Number(value=-0.1, label="driving crop y", minimum=-0.5,
maximum=0.5, step=0.01)
with gr.Row():
with gr.Accordion(open=True, label="Animation Options"):
with gr.Row():
flag_relative_input = gr.Checkbox(value=False, label="relative motion")
flag_stitching = gr.Checkbox(value=True, label="stitching")
driving_multiplier = gr.Number(value=1.0, label="driving multiplier", minimum=0.0, maximum=2.0,
step=0.02)
cfg_scale = gr.Number(value=4.0, label="cfg_scale", minimum=0.0, maximum=10.0, step=0.5)
flag_remap_input = gr.Checkbox(value=True, label="paste-back")
animation_region = gr.Radio(["exp", "pose", "lip", "eyes", "all"], value="all",
label="animation region")
flag_video_editing_head_rotation = gr.Checkbox(value=False, label="relative head rotation (v2v)")
driving_smooth_observation_variance = gr.Number(value=1e-7, label="motion smooth strength (v2v)",
minimum=1e-11, maximum=1e-2, step=1e-8)
flag_is_animal = gr.Checkbox(value=False, label="is_animal")
gr.Markdown(load_description("assets/gradio/gradio_description_animate_clear.md"))
with gr.Row():
process_button_animation = gr.Button("๐ Animate", variant="primary")
with gr.Column():
with gr.Row():
with gr.Column():
output_video_i2v = gr.Video(autoplay=False, label="The animated video in the original image space")
with gr.Column():
output_video_concat_i2v = gr.Video(autoplay=False, label="The animated video")
with gr.Row():
with gr.Column():
output_image_i2i = gr.Image(format="png", type="numpy",
label="The animated image in the original image space",
visible=False)
with gr.Column():
output_image_concat_i2i = gr.Image(format="png", type="numpy", label="The animated image",
visible=False)
with gr.Row():
process_button_reset = gr.ClearButton(
[source_image_input, source_video_input, driving_pickle_input, driving_video_input,
driving_image_input, output_video_i2v, output_video_concat_i2v, output_image_i2i, output_image_concat_i2i],
value="๐งน Clear")
# Retargeting
gr.Markdown(load_description("assets/gradio/gradio_description_retargeting.md"), visible=True)
with gr.Row(visible=True):
eye_retargeting_slider.render()
lip_retargeting_slider.render()
with gr.Row(visible=True):
process_button_retargeting = gr.Button("๐ Retargeting", variant="primary")
process_button_reset_retargeting = gr.ClearButton(
[
eye_retargeting_slider,
lip_retargeting_slider,
retargeting_input_image,
output_image,
output_image_paste_back
],
value="๐งน Clear"
)
with gr.Row(visible=True):
with gr.Column():
with gr.Accordion(open=True, label="Retargeting Input"):
retargeting_input_image.render()
gr.Examples(
examples=[
[osp.join(example_portrait_dir, "s9.jpg")],
[osp.join(example_portrait_dir, "s6.jpg")],
[osp.join(example_portrait_dir, "s10.jpg")],
[osp.join(example_portrait_dir, "s5.jpg")],
[osp.join(example_portrait_dir, "s7.jpg")],
[osp.join(example_portrait_dir, "s12.jpg")],
],
inputs=[retargeting_input_image],
cache_examples=False,
)
with gr.Column():
with gr.Accordion(open=True, label="Retargeting Result"):
output_image.render()
with gr.Column():
with gr.Accordion(open=True, label="Paste-back Result"):
output_image_paste_back.render()
flag_is_animal.change(change_animal_model, inputs=[flag_is_animal])
# binding functions for buttons
process_button_retargeting.click(
# fn=gradio_pipeline.execute_image,
fn=gpu_wrapped_execute_image,
inputs=[eye_retargeting_slider, lip_retargeting_slider, retargeting_input_image, flag_do_crop_input],
outputs=[output_image, output_image_paste_back],
show_progress=True
)
process_button_animation.click(
fn=gpu_wrapped_execute_video,
inputs=[
source_image_input,
source_video_input,
driving_video_input,
driving_image_input,
driving_pickle_input,
driving_audio_input,
driving_text_input,
flag_relative_input,
flag_do_crop_input,
flag_remap_input,
driving_multiplier,
flag_stitching,
flag_crop_driving_video_input,
flag_video_editing_head_rotation,
flag_is_animal,
animation_region,
scale,
vx_ratio,
vy_ratio,
scale_crop_driving_video,
vx_ratio_crop_driving_video,
vy_ratio_crop_driving_video,
driving_smooth_observation_variance,
tab_selection,
v_tab_selection,
cfg_scale,
voice_name
],
outputs=[output_video_i2v, output_video_i2v, output_video_concat_i2v, output_video_concat_i2v,
output_image_i2i, output_image_i2i, output_image_concat_i2i, output_image_concat_i2i],
show_progress=True
)
if __name__ == '__main__':
demo.launch(
server_port=args.port,
share=False,
server_name=args.host_ip
)
|