Spaces:
Configuration error
Configuration error
File size: 30,856 Bytes
8dc9718 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 |
# -*- coding: utf-8 -*-
# @Author : wenshao
# @Email : wenshaoguo0611@gmail.com
# @Project : FasterLivePortrait
# @FileName: faster_live_portrait_pipeline.py
import copy
import os.path
import pdb
import time
import traceback
from PIL import Image
import cv2
from tqdm import tqdm
import numpy as np
import torch
from .. import models
from ..utils.crop import crop_image, parse_bbox_from_landmark, crop_image_by_bbox, paste_back, paste_back_pytorch
from ..utils.utils import resize_to_limit, prepare_paste_back, get_rotation_matrix, calc_lip_close_ratio, \
calc_eye_close_ratio, transform_keypoint, concat_feat
from src.utils import utils
class FasterLivePortraitPipeline:
def __init__(self, cfg, **kwargs):
self.cfg = cfg
self.init(**kwargs)
def init(self, **kwargs):
self.init_vars(**kwargs)
self.init_models(**kwargs)
def update_cfg(self, args_user):
update_ret = False
for key in args_user:
if key in self.cfg.infer_params:
if self.cfg.infer_params[key] != args_user[key]:
update_ret = True
print("update infer cfg {} from {} to {}".format(key, self.cfg.infer_params[key], args_user[key]))
self.cfg.infer_params[key] = args_user[key]
elif key in self.cfg.crop_params:
if self.cfg.crop_params[key] != args_user[key]:
update_ret = True
print("update crop cfg {} from {} to {}".format(key, self.cfg.crop_params[key], args_user[key]))
self.cfg.crop_params[key] = args_user[key]
else:
if key in self.cfg.infer_params and self.cfg.infer_params[key] != args_user[key]:
update_ret = True
print("add {}:{} to infer cfg".format(key, args_user[key]))
self.cfg.infer_params[key] = args_user[key]
return update_ret
def clean_models(self, **kwargs):
"""
clean model
:param kwargs:
:return:
"""
for key in list(self.model_dict.keys()):
del self.model_dict[key]
self.model_dict = {}
def init_models(self, **kwargs):
if not kwargs.get("is_animal", False):
print("load Human Model >>>")
self.is_animal = False
self.model_dict = {}
for model_name in self.cfg.models:
print(f"loading model: {model_name}")
print(self.cfg.models[model_name])
self.model_dict[model_name] = getattr(models, self.cfg.models[model_name]["name"])(
**self.cfg.models[model_name])
else:
print("load Animal Model >>>")
self.is_animal = True
self.model_dict = {}
from src.utils.animal_landmark_runner import XPoseRunner
from src.utils.utils import make_abs_path
checkpoint_dir = None
for model_name in self.cfg.animal_models:
print(f"loading model: {model_name}")
print(self.cfg.animal_models[model_name])
if checkpoint_dir is None and isinstance(self.cfg.animal_models[model_name].model_path, str):
checkpoint_dir = os.path.dirname(self.cfg.animal_models[model_name].model_path)
self.model_dict[model_name] = getattr(models, self.cfg.animal_models[model_name]["name"])(
**self.cfg.animal_models[model_name])
xpose_config_file_path: str = make_abs_path("models/XPose/config_model/UniPose_SwinT.py")
xpose_ckpt_path: str = os.path.join(checkpoint_dir, "xpose.pth")
xpose_embedding_cache_path: str = os.path.join(checkpoint_dir, 'clip_embedding')
self.model_dict["xpose"] = XPoseRunner(model_config_path=xpose_config_file_path,
model_checkpoint_path=xpose_ckpt_path,
embeddings_cache_path=xpose_embedding_cache_path,
flag_use_half_precision=True)
def init_vars(self, **kwargs):
self.mask_crop = cv2.imread(self.cfg.infer_params.mask_crop_path, cv2.IMREAD_COLOR)
self.frame_id = 0
self.src_lmk_pre = None
self.R_d_0 = None
self.x_d_0_info = None
self.R_d_smooth = utils.OneEuroFilter(4, 0.3)
self.exp_smooth = utils.OneEuroFilter(4, 0.3)
## 记录source的信息
self.source_path = None
self.src_infos = []
self.src_imgs = []
self.is_source_video = False
self.device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
def calc_combined_eye_ratio(self, c_d_eyes_i, source_lmk):
c_s_eyes = calc_eye_close_ratio(source_lmk[None])
c_d_eyes_i = np.array(c_d_eyes_i).reshape(1, 1)
# [c_s,eyes, c_d,eyes,i]
combined_eye_ratio_tensor = np.concatenate([c_s_eyes, c_d_eyes_i], axis=1)
return combined_eye_ratio_tensor
def calc_combined_lip_ratio(self, c_d_lip_i, source_lmk):
c_s_lip = calc_lip_close_ratio(source_lmk[None])
c_d_lip_i = np.array(c_d_lip_i).reshape(1, 1) # 1x1
# [c_s,lip, c_d,lip,i]
combined_lip_ratio_tensor = np.concatenate([c_s_lip, c_d_lip_i], axis=1) # 1x2
return combined_lip_ratio_tensor
def prepare_source(self, source_path, **kwargs):
print(f"process source:{source_path} >>>>>>>>")
try:
if utils.is_video(source_path):
self.is_source_video = True
else:
self.is_source_video = False
if self.is_source_video:
src_imgs_bgr = []
src_vcap = cv2.VideoCapture(source_path)
while True:
ret, frame = src_vcap.read()
if not ret:
break
src_imgs_bgr.append(frame)
src_vcap.release()
else:
img_bgr = cv2.imread(source_path, cv2.IMREAD_COLOR)
src_imgs_bgr = [img_bgr]
self.src_imgs = []
self.src_infos = []
self.source_path = source_path
for ii, img_bgr in tqdm(enumerate(src_imgs_bgr), total=len(src_imgs_bgr)):
img_bgr = resize_to_limit(img_bgr, self.cfg.infer_params.source_max_dim,
self.cfg.infer_params.source_division)
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
src_faces = []
if self.is_animal:
with torch.no_grad():
img_rgb_pil = Image.fromarray(img_rgb)
lmk = self.model_dict["xpose"].run(
img_rgb_pil,
'face',
'animal_face',
0,
0
)
if lmk is None:
continue
self.src_imgs.append(img_rgb)
src_faces.append(lmk)
else:
src_faces = self.model_dict["face_analysis"].predict(img_bgr)
if len(src_faces) == 0:
print("No face detected in the this image.")
continue
self.src_imgs.append(img_rgb)
# 如果是实时,只关注最大的那张脸
if kwargs.get("realtime", False):
src_faces = src_faces[:1]
crop_infos = []
for i in range(len(src_faces)):
# NOTE: temporarily only pick the first face, to support multiple face in the future
lmk = src_faces[i]
# crop the face
ret_dct = crop_image(
img_rgb, # ndarray
lmk, # 106x2 or Nx2
dsize=self.cfg.crop_params.src_dsize,
scale=self.cfg.crop_params.src_scale,
vx_ratio=self.cfg.crop_params.src_vx_ratio,
vy_ratio=self.cfg.crop_params.src_vy_ratio,
)
if self.is_animal:
ret_dct["lmk_crop"] = lmk
else:
lmk = self.model_dict["landmark"].predict(img_rgb, lmk)
ret_dct["lmk_crop"] = lmk
ret_dct["lmk_crop_256x256"] = ret_dct["lmk_crop"] * 256 / self.cfg.crop_params.src_dsize
# update a 256x256 version for network input
ret_dct["img_crop_256x256"] = cv2.resize(
ret_dct["img_crop"], (256, 256), interpolation=cv2.INTER_AREA
)
crop_infos.append(ret_dct)
src_infos = [[] for _ in range(len(crop_infos))]
for i, crop_info in enumerate(crop_infos):
source_lmk = crop_info['lmk_crop']
img_crop, img_crop_256x256 = crop_info['img_crop'], crop_info['img_crop_256x256']
pitch, yaw, roll, t, exp, scale, kp = self.model_dict["motion_extractor"].predict(
img_crop_256x256)
x_s_info = {
"pitch": pitch,
"yaw": yaw,
"roll": roll,
"t": t,
"exp": exp,
"scale": scale,
"kp": kp
}
src_infos[i].append(copy.deepcopy(x_s_info))
x_c_s = kp
R_s = get_rotation_matrix(pitch, yaw, roll)
f_s = self.model_dict["app_feat_extractor"].predict(img_crop_256x256)
x_s = transform_keypoint(pitch, yaw, roll, t, exp, scale, kp)
src_infos[i].extend([source_lmk.copy(), R_s.copy(), f_s.copy(), x_s.copy(), x_c_s.copy()])
if not self.is_animal:
flag_lip_zero = self.cfg.infer_params.flag_normalize_lip # not overwrite
if flag_lip_zero:
# let lip-open scalar to be 0 at first
# 似乎要调参?
c_d_lip_before_animation = [0.05]
combined_lip_ratio_tensor_before_animation = self.calc_combined_lip_ratio(
c_d_lip_before_animation, source_lmk.copy())
if combined_lip_ratio_tensor_before_animation[0][
0] < self.cfg.infer_params.lip_normalize_threshold:
flag_lip_zero = False
src_infos[i].append(None)
src_infos[i].append(flag_lip_zero)
else:
lip_delta_before_animation = self.model_dict['stitching_lip_retarget'].predict(
concat_feat(x_s, combined_lip_ratio_tensor_before_animation))
src_infos[i].append(lip_delta_before_animation.copy())
src_infos[i].append(flag_lip_zero)
else:
src_infos[i].append(None)
src_infos[i].append(flag_lip_zero)
else:
src_infos[i].append(None)
src_infos[i].append(False)
######## prepare for pasteback ########
if self.cfg.infer_params.flag_pasteback and self.cfg.infer_params.flag_do_crop and self.cfg.infer_params.flag_stitching:
mask_ori_float = prepare_paste_back(self.mask_crop, crop_info['M_c2o'],
dsize=(img_rgb.shape[1], img_rgb.shape[0]))
mask_ori_float = torch.from_numpy(mask_ori_float).to(self.device)
src_infos[i].append(mask_ori_float)
else:
src_infos[i].append(None)
M = torch.from_numpy(crop_info['M_c2o']).to(self.device)
src_infos[i].append(M)
self.src_infos.append(src_infos[:])
print(f"finish process source:{source_path} >>>>>>>>")
return len(self.src_infos) > 0
except Exception as e:
traceback.print_exc()
return False
def retarget_eye(self, kp_source, eye_close_ratio):
"""
kp_source: BxNx3
eye_close_ratio: Bx3
Return: Bx(3*num_kp+2)
"""
feat_eye = concat_feat(kp_source, eye_close_ratio)
delta = self.model_dict['stitching_eye_retarget'].predict(feat_eye)
return delta
def retarget_lip(self, kp_source, lip_close_ratio):
"""
kp_source: BxNx3
lip_close_ratio: Bx2
"""
feat_lip = concat_feat(kp_source, lip_close_ratio)
delta = self.model_dict['stitching_lip_retarget'].predict(feat_lip)
return delta
def stitching(self, kp_source, kp_driving):
""" conduct the stitching
kp_source: Bxnum_kpx3
kp_driving: Bxnum_kpx3
"""
bs, num_kp = kp_source.shape[:2]
kp_driving_new = kp_driving.copy()
delta = self.model_dict['stitching'].predict(concat_feat(kp_source, kp_driving_new))
delta_exp = delta[..., :3 * num_kp].reshape(bs, num_kp, 3) # 1x20x3
delta_tx_ty = delta[..., 3 * num_kp:3 * num_kp + 2].reshape(bs, 1, 2) # 1x1x2
kp_driving_new += delta_exp
kp_driving_new[..., :2] += delta_tx_ty
return kp_driving_new
def _run(self, src_info, x_d_i_info, x_d_0_info, R_d_i, R_d_0, realtime, input_eye_ratio, input_lip_ratio,
I_p_pstbk, **kwargs):
out_crop, out_org = None, None
eye_delta_before_animation = None
for j in range(len(src_info)):
if self.is_source_video:
x_s_info, source_lmk, R_s, f_s, x_s, x_c_s, lip_delta_before_animation, flag_lip_zero, mask_ori_float, M = \
src_info[j]
# let lip-open scalar to be 0 at first if the input is a video and flag_relative_motion
if not (self.cfg.infer_params.flag_normalize_lip and self.cfg.infer_params.flag_relative_motion):
lip_delta_before_animation = None
# let eye-open scalar to be the same as the first frame if the latter is eye-open state
if self.cfg.infer_params.flag_source_video_eye_retargeting and source_lmk is not None:
combined_eye_ratio_tensor_frame_zero = utils.calc_eye_close_ratio(src_info[0][1])
c_d_eye_before_animation_frame_zero = [
[combined_eye_ratio_tensor_frame_zero[0][:2].mean()]]
if c_d_eye_before_animation_frame_zero[0][
0] < self.cfg.infer_params.source_video_eye_retargeting_threshold:
c_d_eye_before_animation_frame_zero = [[0.39]]
combined_eye_ratio_tensor_before_animation = self.calc_combined_eye_ratio(
c_d_eye_before_animation_frame_zero, source_lmk)
eye_delta_before_animation = self.retarget_eye(x_s, combined_eye_ratio_tensor_before_animation)
if not realtime and self.cfg.infer_params.flag_pasteback and self.cfg.infer_params.flag_do_crop and \
self.cfg.infer_params.flag_stitching:
mask_ori_float = prepare_paste_back(self.mask_crop, M.cpu().numpy(),
dsize=(self.src_imgs[0].shape[1], self.src_imgs[0].shape[0]))
mask_ori_float = torch.from_numpy(mask_ori_float).to(self.device)
else:
x_s_info, source_lmk, R_s, f_s, x_s, x_c_s, lip_delta_before_animation, flag_lip_zero, mask_ori_float, M = \
src_info[j]
if self.cfg.infer_params.flag_relative_motion:
if self.cfg.infer_params.animation_region in ["all", "pose"]:
if self.is_source_video:
R_new = self.R_d_smooth.process(R_d_i)
else:
R_new = (R_d_i @ np.transpose(R_d_0, (0, 2, 1))) @ R_s
else:
R_new = R_s
delta_new = x_s_info['exp'].copy()
x_d_exp_smooth = x_d_i_info['exp'].copy()
if self.is_source_video:
x_d_exp_smooth = self.exp_smooth.process(x_d_exp_smooth)
if self.cfg.infer_params.animation_region in ["all", "exp"]:
if self.is_source_video:
for idx in [1, 2, 6, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]:
delta_new[:, idx, :] = x_d_exp_smooth[:, idx, :]
delta_new[:, 3:5, 1] = x_d_exp_smooth[:, 3:5, 1]
delta_new[:, 5, 2] = x_d_exp_smooth[:, 5, 2]
delta_new[:, 8, 2] = x_d_exp_smooth[:, 8, 2]
delta_new[:, 9, 1:] = x_d_exp_smooth[:, 9, 1:]
else:
delta_new = x_s_info['exp'] + (x_d_i_info['exp'] - x_d_0_info['exp'])
elif self.cfg.infer_params.animation_region in ["lip"]:
for lip_idx in [6, 12, 14, 17, 19, 20]:
if self.is_source_video:
delta_new[:, lip_idx, :] = x_d_exp_smooth[:, lip_idx, :]
else:
delta_new[:, lip_idx, :] = (x_s_info['exp'] + (x_d_i_info['exp'] - x_d_0_info['exp']))[:,
lip_idx, :]
elif self.cfg.infer_params.animation_region in ["eyes"]:
for eyes_idx in [11, 13, 15, 16, 18]:
if self.is_source_video:
delta_new[:, eyes_idx, :] = x_d_exp_smooth[:, eyes_idx, :]
else:
delta_new[:, eyes_idx, :] = (x_s_info['exp'] + (x_d_i_info['exp'] - x_d_0_info['exp']))[:,
eyes_idx, :]
if self.cfg.infer_params.animation_region in ["all"]:
scale_new = x_s_info['scale'] if self.is_source_video else x_s_info['scale'] * (
x_d_i_info['scale'] / x_d_0_info['scale'])
else:
scale_new = x_s_info['scale']
if self.cfg.infer_params.animation_region in ["all"]:
t_new = x_s_info['t'] if self.is_source_video else x_s_info['t'] + (
x_d_i_info['t'] - x_d_0_info['t'])
else:
t_new = x_s_info['t']
else:
if self.cfg.infer_params.animation_region in ["all", "pose"]:
if self.is_source_video:
R_new = self.R_d_smooth.process(R_d_i)
else:
R_new = R_d_i
else:
R_new = R_s
delta_new = x_s_info['exp'].copy()
x_d_exp_smooth = x_d_i_info['exp'].copy()
if self.is_source_video:
x_d_exp_smooth = self.exp_smooth.process(x_d_exp_smooth)
if self.cfg.infer_params.animation_region in ["all", "exp"]:
for idx in [1, 2, 6, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]:
delta_new[:, idx, :] = x_d_exp_smooth[:, idx, :] if self.is_source_video else x_d_i_info['exp'][
:, idx, :]
delta_new[:, 3:5, 1] = x_d_exp_smooth[:, 3:5, 1] if self.is_source_video else x_d_i_info['exp'][:,
3:5, 1]
delta_new[:, 5, 2] = x_d_exp_smooth[:, 5, 2] if self.is_source_video else x_d_i_info['exp'][:,
5, 2]
delta_new[:, 8, 2] = x_d_exp_smooth[:, 8, 2] if self.is_source_video else x_d_i_info['exp'][:,
8, 2]
delta_new[:, 9, 1:] = x_d_exp_smooth[:, 9, 1:] if self.is_source_video else x_d_i_info['exp'][:,
9, 1:]
elif self.cfg.infer_params.animation_region in ["lip"]:
for lip_idx in [6, 12, 14, 17, 19, 20]:
delta_new[:, lip_idx, :] = x_d_exp_smooth[:, lip_idx, :] if self.is_source_video else \
x_d_i_info['exp'][:, lip_idx, :]
elif self.cfg.infer_params.animation_region in ["eyes"]:
for eyes_idx in [11, 13, 15, 16, 18]:
delta_new[:, eyes_idx, :] = x_d_exp_smooth[:, eyes_idx, :] if self.is_source_video else \
x_d_i_info['exp'][:, eyes_idx, :]
scale_new = x_s_info['scale'].copy()
if self.cfg.infer_params.animation_region in ["all", "pose"]:
t_new = x_d_i_info['t'].copy()
else:
t_new = x_s_info['t'].copy()
t_new[..., 2] = 0 # zero tz
x_d_i_new = scale_new * (x_c_s @ R_new + delta_new) + t_new
if not self.is_animal:
# Algorithm 1:
if not self.cfg.infer_params.flag_stitching and not self.cfg.infer_params.flag_eye_retargeting and not self.cfg.infer_params.flag_lip_retargeting:
# without stitching or retargeting
if flag_lip_zero and lip_delta_before_animation is not None:
x_d_i_new += lip_delta_before_animation.reshape(-1, x_s.shape[1], 3)
if self.cfg.infer_params.flag_source_video_eye_retargeting and eye_delta_before_animation is not None:
x_d_i_new += eye_delta_before_animation
elif self.cfg.infer_params.flag_stitching and not self.cfg.infer_params.flag_eye_retargeting and not self.cfg.infer_params.flag_lip_retargeting:
# with stitching and without retargeting
if flag_lip_zero and lip_delta_before_animation is not None:
x_d_i_new = self.stitching(x_s, x_d_i_new) + lip_delta_before_animation.reshape(
-1, x_s.shape[1], 3)
else:
x_d_i_new = self.stitching(x_s, x_d_i_new)
if self.cfg.infer_params.flag_source_video_eye_retargeting and eye_delta_before_animation is not None:
x_d_i_new += eye_delta_before_animation
else:
eyes_delta, lip_delta = None, None
if self.cfg.infer_params.flag_eye_retargeting:
c_d_eyes_i = input_eye_ratio
combined_eye_ratio_tensor = self.calc_combined_eye_ratio(c_d_eyes_i,
source_lmk)
# ∆_eyes,i = R_eyes(x_s; c_s,eyes, c_d,eyes,i)
eyes_delta = self.retarget_eye(x_s, combined_eye_ratio_tensor)
if self.cfg.infer_params.flag_lip_retargeting:
c_d_lip_i = input_lip_ratio
combined_lip_ratio_tensor = self.calc_combined_lip_ratio(c_d_lip_i, source_lmk)
# ∆_lip,i = R_lip(x_s; c_s,lip, c_d,lip,i)
lip_delta = self.retarget_lip(x_s, combined_lip_ratio_tensor)
if self.cfg.infer_params.flag_relative_motion: # use x_s
x_d_i_new = x_s + \
(eyes_delta.reshape(-1, x_s.shape[1], 3) if eyes_delta is not None else 0) + \
(lip_delta.reshape(-1, x_s.shape[1], 3) if lip_delta is not None else 0)
else: # use x_d,i
x_d_i_new = x_d_i_new + \
(eyes_delta.reshape(-1, x_s.shape[1], 3) if eyes_delta is not None else 0) + \
(lip_delta.reshape(-1, x_s.shape[1], 3) if lip_delta is not None else 0)
if self.cfg.infer_params.flag_stitching:
x_d_i_new = self.stitching(x_s, x_d_i_new)
else:
if self.cfg.infer_params.flag_stitching:
x_d_i_new = self.stitching(x_s, x_d_i_new)
x_d_i_new = x_s + (x_d_i_new - x_s) * self.cfg.infer_params.driving_multiplier
out_crop = self.model_dict["warping_spade"].predict(f_s, x_s, x_d_i_new)
if not realtime and self.cfg.infer_params.flag_pasteback and self.cfg.infer_params.flag_do_crop and self.cfg.infer_params.flag_stitching:
# TODO: pasteback is slow, considering optimize it using multi-threading or GPU
# I_p_pstbk = paste_back(out_crop, crop_info['M_c2o'], I_p_pstbk, mask_ori_float)
I_p_pstbk = paste_back_pytorch(out_crop, M, I_p_pstbk, mask_ori_float)
return out_crop.to(dtype=torch.uint8).cpu().numpy(), I_p_pstbk.to(dtype=torch.uint8).cpu().numpy()
def run(self, image, img_src, src_info, **kwargs):
img_bgr = image
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
I_p_pstbk = torch.from_numpy(img_src).to(self.device).float()
realtime = kwargs.get("realtime", False)
if self.cfg.infer_params.flag_crop_driving_video:
if self.src_lmk_pre is None:
src_face = self.model_dict["face_analysis"].predict(img_bgr)
if len(src_face) == 0:
return None, None, None, None
lmk = src_face[0]
lmk = self.model_dict["landmark"].predict(img_rgb, lmk)
self.src_lmk_pre = lmk.copy()
else:
lmk = self.model_dict["landmark"].predict(img_rgb, self.src_lmk_pre)
self.src_lmk_pre = lmk.copy()
ret_bbox = parse_bbox_from_landmark(
lmk,
scale=self.cfg.crop_params.dri_scale,
vx_ratio_crop_video=self.cfg.crop_params.dri_vx_ratio,
vy_ratio=self.cfg.crop_params.dri_vy_ratio,
)["bbox"]
global_bbox = [
ret_bbox[0, 0],
ret_bbox[0, 1],
ret_bbox[2, 0],
ret_bbox[2, 1],
]
ret_dct = crop_image_by_bbox(
img_rgb,
global_bbox,
lmk=lmk,
dsize=kwargs.get("dsize", 512),
flag_rot=False,
borderValue=(0, 0, 0),
)
lmk_crop = ret_dct["lmk_crop"]
img_crop = ret_dct["img_crop"]
img_crop = cv2.resize(img_crop, (256, 256))
else:
if self.src_lmk_pre is None:
src_face = self.model_dict["face_analysis"].predict(img_bgr)
if len(src_face) == 0:
return None, None, None, None
lmk = src_face[0]
lmk = self.model_dict["landmark"].predict(img_rgb, lmk)
self.src_lmk_pre = lmk.copy()
else:
lmk = self.model_dict["landmark"].predict(img_rgb, self.src_lmk_pre)
self.src_lmk_pre = lmk.copy()
lmk_crop = lmk.copy()
img_crop = cv2.resize(img_rgb, (256, 256))
input_eye_ratio = calc_eye_close_ratio(lmk_crop[None])
input_lip_ratio = calc_lip_close_ratio(lmk_crop[None])
pitch, yaw, roll, t, exp, scale, kp = self.model_dict["motion_extractor"].predict(img_crop)
x_d_i_info = {
"pitch": pitch,
"yaw": yaw,
"roll": roll,
"t": t,
"exp": exp,
"scale": scale,
"kp": kp
}
R_d_i = get_rotation_matrix(pitch, yaw, roll)
x_d_i_info["R"] = R_d_i
x_d_i_info_copy = copy.deepcopy(x_d_i_info)
for key in x_d_i_info_copy:
x_d_i_info_copy[key] = x_d_i_info_copy[key].astype(np.float32)
dri_motion_info = [x_d_i_info_copy, copy.deepcopy(input_eye_ratio.astype(np.float32)),
copy.deepcopy(input_lip_ratio.astype(np.float32))]
if kwargs.get("first_frame", False) or self.R_d_0 is None:
self.frame_id = 0
self.R_d_0 = R_d_i.copy()
self.x_d_0_info = copy.deepcopy(x_d_i_info)
# realtime smooth
self.R_d_smooth = utils.OneEuroFilter(4, 0.3)
self.exp_smooth = utils.OneEuroFilter(4, 0.3)
R_d_0 = self.R_d_0.copy()
x_d_0_info = copy.deepcopy(self.x_d_0_info)
out_crop, I_p_pstbk = self._run(src_info, x_d_i_info, x_d_0_info, R_d_i, R_d_0, realtime, input_eye_ratio,
input_lip_ratio,
I_p_pstbk, **kwargs)
return img_crop, out_crop, I_p_pstbk, dri_motion_info
def run_with_pkl(self, dri_motion_info, img_src, src_info, **kwargs):
I_p_pstbk = torch.from_numpy(img_src).to(self.device).float()
realtime = kwargs.get("realtime", False)
input_eye_ratio = dri_motion_info[1]
input_lip_ratio = dri_motion_info[2]
x_d_i_info = dri_motion_info[0]
R_d_i = x_d_i_info["R"] if "R" in x_d_i_info else x_d_i_info["R_d"]
if kwargs.get("first_frame", False) or self.R_d_0 is None:
self.frame_id = 0
self.R_d_0 = R_d_i.copy()
self.x_d_0_info = copy.deepcopy(x_d_i_info)
# realtime smooth
self.R_d_smooth = utils.OneEuroFilter(4, 0.3)
self.exp_smooth = utils.OneEuroFilter(4, 0.3)
R_d_0 = self.R_d_0.copy()
x_d_0_info = copy.deepcopy(self.x_d_0_info)
out_crop, I_p_pstbk = self._run(src_info, x_d_i_info, x_d_0_info, R_d_i, R_d_0, realtime, input_eye_ratio,
input_lip_ratio, I_p_pstbk, **kwargs)
return out_crop, I_p_pstbk
def __del__(self):
self.clean_models()
|