File size: 14,934 Bytes
8dc9718
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
# -*- coding: utf-8 -*-
# @Author  : wenshao
# @Email   : wenshaoguo1026@gmail.com
# @Project : FasterLivePortrait
# @FileName: run.py

"""
# video
 python run.py \
 --src_image assets/examples/driving/d13.mp4 \
 --dri_video assets/examples/driving/d11.mp4 \
 --cfg configs/trt_infer.yaml \
 --paste_back \
 --animal
# pkl
 python run.py \
 --src_image assets/examples/source/s12.jpg \
 --dri_video ./results/2024-09-13-081710/d0.mp4.pkl \
 --cfg configs/trt_infer.yaml \
 --paste_back \
 --animal
"""
import os
import argparse
import pdb
import subprocess
import ffmpeg
import cv2
import time
import numpy as np
import os
import datetime
import platform
import pickle
from omegaconf import OmegaConf
from tqdm import tqdm
from colorama import Fore, Back, Style
from src.pipelines.faster_live_portrait_pipeline import FasterLivePortraitPipeline
from src.utils.utils import video_has_audio

if platform.system().lower() == 'windows':
    FFMPEG = "third_party/ffmpeg-7.0.1-full_build/bin/ffmpeg.exe"
else:
    FFMPEG = "ffmpeg"


def run_with_video(args):
    print(Fore.RED+'Render,  Q > exit,  S > Stitching,  Z > RelativeMotion,  X > AnimationRegion,  C > CropDrivingVideo, KL > AdjustSourceScale, NM > AdjustDriverScale,  Space > Webcamassource,  R > SwitchRealtimeWebcamUpdate'+Style.RESET_ALL)
    infer_cfg = OmegaConf.load(args.cfg)
    infer_cfg.infer_params.flag_pasteback = args.paste_back

    pipe = FasterLivePortraitPipeline(cfg=infer_cfg, is_animal=args.animal)
    ret = pipe.prepare_source(args.src_image, realtime=args.realtime)
    if not ret:
        print(f"no face in {args.src_image}! exit!")
        exit(1)
    if not args.dri_video or not os.path.exists(args.dri_video):
        # read frame from camera if no driving video input
        vcap = cv2.VideoCapture(0)
        if not vcap.isOpened():
            print("no camera found! exit!")
            exit(1)
    else:
        vcap = cv2.VideoCapture(args.dri_video)
    fps = int(vcap.get(cv2.CAP_PROP_FPS))
    h, w = pipe.src_imgs[0].shape[:2]
    save_dir = f"./results/{datetime.datetime.now().strftime('%Y-%m-%d-%H%M%S')}"
    os.makedirs(save_dir, exist_ok=True)

    # render output video
    if not args.realtime:
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        vsave_crop_path = os.path.join(save_dir,
                                       f"{os.path.basename(args.src_image)}-{os.path.basename(args.dri_video)}-crop.mp4")
        vout_crop = cv2.VideoWriter(vsave_crop_path, fourcc, fps, (512 * 2, 512))
        vsave_org_path = os.path.join(save_dir,
                                      f"{os.path.basename(args.src_image)}-{os.path.basename(args.dri_video)}-org.mp4")
        vout_org = cv2.VideoWriter(vsave_org_path, fourcc, fps, (w, h))

    infer_times = []
    motion_lst = []
    c_eyes_lst = []
    c_lip_lst = []

    frame_ind = 0
    while vcap.isOpened():
        ret, frame = vcap.read()
        if not ret:
            break
        t0 = time.time()
        first_frame = frame_ind == 0
        dri_crop, out_crop, out_org, dri_motion_info = pipe.run(frame, pipe.src_imgs[0], pipe.src_infos[0],
                                                                first_frame=first_frame)
        frame_ind += 1
        if out_crop is None:
            print(f"no face in driving frame:{frame_ind}")
            continue

        motion_lst.append(dri_motion_info[0])
        c_eyes_lst.append(dri_motion_info[1])
        c_lip_lst.append(dri_motion_info[2])

        infer_times.append(time.time() - t0)
        # print(time.time() - t0)
        dri_crop = cv2.resize(dri_crop, (512, 512))
        out_crop = np.concatenate([dri_crop, out_crop], axis=1)
        out_crop = cv2.cvtColor(out_crop, cv2.COLOR_RGB2BGR)
        if not args.realtime:
            vout_crop.write(out_crop)
            out_org = cv2.cvtColor(out_org, cv2.COLOR_RGB2BGR)
            vout_org.write(out_org)
        else:
            if infer_cfg.infer_params.flag_pasteback:
                out_org = cv2.cvtColor(out_org, cv2.COLOR_RGB2BGR)
                cv2.imshow('Render', out_org)
            else:
                # image show in realtime mode
                cv2.imshow('Render', out_crop)
            # 按下'q'键退出循环
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
    vcap.release()
    if not args.realtime:
        vout_crop.release()
        vout_org.release()
        if video_has_audio(args.dri_video):
            vsave_crop_path_new = os.path.splitext(vsave_crop_path)[0] + "-audio.mp4"
            subprocess.call(
                [FFMPEG, "-i", vsave_crop_path, "-i", args.dri_video,
                 "-b:v", "10M", "-c:v",
                 "libx264", "-map", "0:v", "-map", "1:a",
                 "-c:a", "aac",
                 "-pix_fmt", "yuv420p", vsave_crop_path_new, "-y", "-shortest"])
            vsave_org_path_new = os.path.splitext(vsave_org_path)[0] + "-audio.mp4"
            subprocess.call(
                [FFMPEG, "-i", vsave_org_path, "-i", args.dri_video,
                 "-b:v", "10M", "-c:v",
                 "libx264", "-map", "0:v", "-map", "1:a",
                 "-c:a", "aac",
                 "-pix_fmt", "yuv420p", vsave_org_path_new, "-y", "-shortest"])

            print(vsave_crop_path_new)
            print(vsave_org_path_new)
        else:
            print(vsave_crop_path)
            print(vsave_org_path)
    else:
        cv2.destroyAllWindows()

    print(
        "inference median time: {} ms/frame, mean time: {} ms/frame".format(np.median(infer_times) * 1000,
                                                                            np.mean(infer_times) * 1000))
    # save driving motion to pkl
    template_dct = {
        'n_frames': len(motion_lst),
        'output_fps': fps,
        'motion': motion_lst,
        'c_eyes_lst': c_eyes_lst,
        'c_lip_lst': c_lip_lst,
    }
    template_pkl_path = os.path.join(save_dir,
                                     f"{os.path.basename(args.dri_video)}.pkl")
    with open(template_pkl_path, "wb") as fw:
        pickle.dump(template_dct, fw)
    print(f"save driving motion pkl file at : {template_pkl_path}")


def run_with_pkl(args):
    infer_cfg = OmegaConf.load(args.cfg)
    infer_cfg.infer_params.flag_pasteback = args.paste_back

    pipe = FasterLivePortraitPipeline(cfg=infer_cfg, is_animal=args.animal)
    ret = pipe.prepare_source(args.src_image, realtime=args.realtime)
    if not ret:
        print(f"no face in {args.src_image}! exit!")
        return
    with open(args.dri_video, "rb") as fin:
        dri_motion_infos = pickle.load(fin)

    fps = int(dri_motion_infos["output_fps"])
    h, w = pipe.src_imgs[0].shape[:2]
    save_dir = f"./results/{datetime.datetime.now().strftime('%Y-%m-%d-%H%M%S')}"
    os.makedirs(save_dir, exist_ok=True)

    # render output video
    if not args.realtime:
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        vsave_crop_path = os.path.join(save_dir,
                                       f"{os.path.basename(args.src_image)}-{os.path.basename(args.dri_video)}-crop.mp4")
        vout_crop = cv2.VideoWriter(vsave_crop_path, fourcc, fps, (512, 512))
        vsave_org_path = os.path.join(save_dir,
                                      f"{os.path.basename(args.src_image)}-{os.path.basename(args.dri_video)}-org.mp4")
        vout_org = cv2.VideoWriter(vsave_org_path, fourcc, fps, (w, h))

    infer_times = []
    motion_lst = dri_motion_infos["motion"]
    c_eyes_lst = dri_motion_infos["c_eyes_lst"] if "c_eyes_lst" in dri_motion_infos else dri_motion_infos[
        "c_d_eyes_lst"]
    c_lip_lst = dri_motion_infos["c_lip_lst"] if "c_lip_lst" in dri_motion_infos else dri_motion_infos["c_d_lip_lst"]

    frame_num = len(motion_lst)
    for frame_ind in tqdm(range(frame_num)):
        t0 = time.time()
        first_frame = frame_ind == 0
        dri_motion_info_ = [motion_lst[frame_ind], c_eyes_lst[frame_ind], c_lip_lst[frame_ind]]
        out_crop, out_org = pipe.run_with_pkl(dri_motion_info_, pipe.src_imgs[0], pipe.src_infos[0],
                                              first_frame=first_frame)
        if out_crop is None:
            print(f"no face in driving frame:{frame_ind}")
            continue

        infer_times.append(time.time() - t0)
        # print(time.time() - t0)
        out_crop = cv2.cvtColor(out_crop, cv2.COLOR_RGB2BGR)
        if not args.realtime:
            vout_crop.write(out_crop)
            out_org = cv2.cvtColor(out_org, cv2.COLOR_RGB2BGR)
            vout_org.write(out_org)
        else:
            if infer_cfg.infer_params.flag_pasteback:
                out_org = cv2.cvtColor(out_org, cv2.COLOR_RGB2BGR)
                cv2.imshow('Render,  Q > exit,  S > Stitching,  Z > RelativeMotion,  X > AnimationRegion,  C > CropDrivingVideo, KL > AdjustSourceScale, NM > AdjustDriverScale,  Space > Webcamassource,  R > SwitchRealtimeWebcamUpdate',out_org)
            else:
                # image show in realtime mode
                cv2.imshow('Render,  Q > exit,  S > Stitching,  Z > RelativeMotion,  X > AnimationRegion,  C > CropDrivingVideo, KL > AdjustSourceScale, NM > AdjustDriverScale,  Space > Webcamassource,  R > SwitchRealtimeWebcamUpdate', out_crop)
            # Press the 'q' key to exit the loop, r to switch realtime src_webcam update, spacebar to switch sourceisWebcam
            k = cv2.waitKey(1) & 0xFF
            if k == ord('q'):
                break
            # Key for Interesting Params    
            if k == ord('s'):
                infer_cfg.infer_params.flag_stitching = not infer_cfg.infer_params.flag_stitching
                print('flag_stitching:'+str(infer_cfg.infer_params.flag_stitching))
            if k == ord('z'):
                infer_cfg.infer_params.flag_relative_motion = not infer_cfg.infer_params.flag_relative_motion
                print('flag_relative_motion:'+str(infer_cfg.infer_params.flag_relative_motion))                
            if k == ord('x'):
                if infer_cfg.infer_params.animation_region == "all": infer_cfg.infer_params.animation_region = "exp", print('animation_region = "exp"')
                else:infer_cfg.infer_params.animation_region = "all", print('animation_region = "all"')
            if k == ord('c'):
                infer_cfg.infer_params.flag_crop_driving_video = not infer_cfg.infer_params.flag_crop_driving_video
                print('flag_crop_driving_video:'+str(infer_cfg.infer_params.flag_crop_driving_video))  
            if k == ord('v'):
                infer_cfg.infer_params.flag_pasteback = not infer_cfg.infer_params.flag_pasteback
                print('flag_pasteback:'+str(infer_cfg.infer_params.flag_pasteback)) 
                
            if k == ord('a'):
                infer_cfg.infer_params.flag_normalize_lip = not infer_cfg.infer_params.flag_normalize_lip
                print('flag_normalize_lip:'+str(infer_cfg.infer_params.flag_normalize_lip))  
            if k == ord('d'):
                infer_cfg.infer_params.flag_source_video_eye_retargeting = not infer_cfg.infer_params.flag_source_video_eye_retargeting
                print('flag_source_video_eye_retargeting:'+str(infer_cfg.infer_params.flag_source_video_eye_retargeting))  
            if k == ord('f'):
                infer_cfg.infer_params.flag_video_editing_head_rotation = not infer_cfg.infer_params.flag_video_editing_head_rotation
                print('flag_video_editing_head_rotation:'+str(infer_cfg.infer_params.flag_video_editing_head_rotation))                 
            if k == ord('g'):
                infer_cfg.infer_params.flag_eye_retargeting = not infer_cfg.infer_params.flag_eye_retargeting
                print('flag_eye_retargeting:'+str(infer_cfg.infer_params.flag_eye_retargeting)) 
                
            if k == ord('k'):
                infer_cfg.crop_params.src_scale -= 0.1
                ret = pipe.prepare_source(args.src_image, realtime=args.realtime)
                print('src_scale:'+str(infer_cfg.crop_params.src_scale))                
            if k == ord('l'):
                infer_cfg.crop_params.src_scale += 0.1
                ret = pipe.prepare_source(args.src_image, realtime=args.realtime)
                print('src_scale:'+str(infer_cfg.crop_params.src_scale))  
            if k == ord('n'):
                infer_cfg.crop_params.dri_scale -= 0.1
                print('dri_scale:'+str(infer_cfg.crop_params.dri_scale))                
            if k == ord('m'):
                infer_cfg.crop_params.dri_scale += 0.1
                print('dri_scale:'+str(infer_cfg.crop_params.dri_scale))

    if not args.realtime:
        vout_crop.release()
        vout_org.release()
        if video_has_audio(args.dri_video):
            vsave_crop_path_new = os.path.splitext(vsave_crop_path)[0] + "-audio.mp4"
            subprocess.call(
                [FFMPEG, "-i", vsave_crop_path, "-i", args.dri_video,
                 "-b:v", "10M", "-c:v",
                 "libx264", "-map", "0:v", "-map", "1:a",
                 "-c:a", "aac",
                 "-pix_fmt", "yuv420p", vsave_crop_path_new, "-y", "-shortest"])
            vsave_org_path_new = os.path.splitext(vsave_org_path)[0] + "-audio.mp4"
            subprocess.call(
                [FFMPEG, "-i", vsave_org_path, "-i", args.dri_video,
                 "-b:v", "10M", "-c:v",
                 "libx264", "-map", "0:v", "-map", "1:a",
                 "-c:a", "aac",
                 "-pix_fmt", "yuv420p", vsave_org_path_new, "-y", "-shortest"])

            print(vsave_crop_path_new)
            print(vsave_org_path_new)
        else:
            print(vsave_crop_path)
            print(vsave_org_path)
    else:
        cv2.destroyAllWindows()

    print(
        "inference median time: {} ms/frame, mean time: {} ms/frame".format(np.median(infer_times) * 1000,
                                                                            np.mean(infer_times) * 1000))


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='Faster Live Portrait Pipeline')
    parser.add_argument('--src_image', required=False, type=str, default="assets/examples/source/s12.jpg",
                        help='source image')
    parser.add_argument('--dri_video', required=False, type=str, default="assets/examples/driving/d14.mp4",
                        help='driving video')
    parser.add_argument('--cfg', required=False, type=str, default="configs/onnx_infer.yaml", help='inference config')
    parser.add_argument('--realtime', action='store_true', help='realtime inference')
    parser.add_argument('--animal', action='store_true', help='use animal model')
    parser.add_argument('--paste_back', action='store_true', default=False, help='paste back to origin image')
    args, unknown = parser.parse_known_args()

    if args.dri_video.endswith(".pkl"):
        run_with_pkl(args)
    else:
        run_with_video(args)