Spaces:
Configuration error
Configuration error
File size: 14,934 Bytes
8dc9718 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
# -*- coding: utf-8 -*-
# @Author : wenshao
# @Email : wenshaoguo1026@gmail.com
# @Project : FasterLivePortrait
# @FileName: run.py
"""
# video
python run.py \
--src_image assets/examples/driving/d13.mp4 \
--dri_video assets/examples/driving/d11.mp4 \
--cfg configs/trt_infer.yaml \
--paste_back \
--animal
# pkl
python run.py \
--src_image assets/examples/source/s12.jpg \
--dri_video ./results/2024-09-13-081710/d0.mp4.pkl \
--cfg configs/trt_infer.yaml \
--paste_back \
--animal
"""
import os
import argparse
import pdb
import subprocess
import ffmpeg
import cv2
import time
import numpy as np
import os
import datetime
import platform
import pickle
from omegaconf import OmegaConf
from tqdm import tqdm
from colorama import Fore, Back, Style
from src.pipelines.faster_live_portrait_pipeline import FasterLivePortraitPipeline
from src.utils.utils import video_has_audio
if platform.system().lower() == 'windows':
FFMPEG = "third_party/ffmpeg-7.0.1-full_build/bin/ffmpeg.exe"
else:
FFMPEG = "ffmpeg"
def run_with_video(args):
print(Fore.RED+'Render, Q > exit, S > Stitching, Z > RelativeMotion, X > AnimationRegion, C > CropDrivingVideo, KL > AdjustSourceScale, NM > AdjustDriverScale, Space > Webcamassource, R > SwitchRealtimeWebcamUpdate'+Style.RESET_ALL)
infer_cfg = OmegaConf.load(args.cfg)
infer_cfg.infer_params.flag_pasteback = args.paste_back
pipe = FasterLivePortraitPipeline(cfg=infer_cfg, is_animal=args.animal)
ret = pipe.prepare_source(args.src_image, realtime=args.realtime)
if not ret:
print(f"no face in {args.src_image}! exit!")
exit(1)
if not args.dri_video or not os.path.exists(args.dri_video):
# read frame from camera if no driving video input
vcap = cv2.VideoCapture(0)
if not vcap.isOpened():
print("no camera found! exit!")
exit(1)
else:
vcap = cv2.VideoCapture(args.dri_video)
fps = int(vcap.get(cv2.CAP_PROP_FPS))
h, w = pipe.src_imgs[0].shape[:2]
save_dir = f"./results/{datetime.datetime.now().strftime('%Y-%m-%d-%H%M%S')}"
os.makedirs(save_dir, exist_ok=True)
# render output video
if not args.realtime:
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
vsave_crop_path = os.path.join(save_dir,
f"{os.path.basename(args.src_image)}-{os.path.basename(args.dri_video)}-crop.mp4")
vout_crop = cv2.VideoWriter(vsave_crop_path, fourcc, fps, (512 * 2, 512))
vsave_org_path = os.path.join(save_dir,
f"{os.path.basename(args.src_image)}-{os.path.basename(args.dri_video)}-org.mp4")
vout_org = cv2.VideoWriter(vsave_org_path, fourcc, fps, (w, h))
infer_times = []
motion_lst = []
c_eyes_lst = []
c_lip_lst = []
frame_ind = 0
while vcap.isOpened():
ret, frame = vcap.read()
if not ret:
break
t0 = time.time()
first_frame = frame_ind == 0
dri_crop, out_crop, out_org, dri_motion_info = pipe.run(frame, pipe.src_imgs[0], pipe.src_infos[0],
first_frame=first_frame)
frame_ind += 1
if out_crop is None:
print(f"no face in driving frame:{frame_ind}")
continue
motion_lst.append(dri_motion_info[0])
c_eyes_lst.append(dri_motion_info[1])
c_lip_lst.append(dri_motion_info[2])
infer_times.append(time.time() - t0)
# print(time.time() - t0)
dri_crop = cv2.resize(dri_crop, (512, 512))
out_crop = np.concatenate([dri_crop, out_crop], axis=1)
out_crop = cv2.cvtColor(out_crop, cv2.COLOR_RGB2BGR)
if not args.realtime:
vout_crop.write(out_crop)
out_org = cv2.cvtColor(out_org, cv2.COLOR_RGB2BGR)
vout_org.write(out_org)
else:
if infer_cfg.infer_params.flag_pasteback:
out_org = cv2.cvtColor(out_org, cv2.COLOR_RGB2BGR)
cv2.imshow('Render', out_org)
else:
# image show in realtime mode
cv2.imshow('Render', out_crop)
# 按下'q'键退出循环
if cv2.waitKey(1) & 0xFF == ord('q'):
break
vcap.release()
if not args.realtime:
vout_crop.release()
vout_org.release()
if video_has_audio(args.dri_video):
vsave_crop_path_new = os.path.splitext(vsave_crop_path)[0] + "-audio.mp4"
subprocess.call(
[FFMPEG, "-i", vsave_crop_path, "-i", args.dri_video,
"-b:v", "10M", "-c:v",
"libx264", "-map", "0:v", "-map", "1:a",
"-c:a", "aac",
"-pix_fmt", "yuv420p", vsave_crop_path_new, "-y", "-shortest"])
vsave_org_path_new = os.path.splitext(vsave_org_path)[0] + "-audio.mp4"
subprocess.call(
[FFMPEG, "-i", vsave_org_path, "-i", args.dri_video,
"-b:v", "10M", "-c:v",
"libx264", "-map", "0:v", "-map", "1:a",
"-c:a", "aac",
"-pix_fmt", "yuv420p", vsave_org_path_new, "-y", "-shortest"])
print(vsave_crop_path_new)
print(vsave_org_path_new)
else:
print(vsave_crop_path)
print(vsave_org_path)
else:
cv2.destroyAllWindows()
print(
"inference median time: {} ms/frame, mean time: {} ms/frame".format(np.median(infer_times) * 1000,
np.mean(infer_times) * 1000))
# save driving motion to pkl
template_dct = {
'n_frames': len(motion_lst),
'output_fps': fps,
'motion': motion_lst,
'c_eyes_lst': c_eyes_lst,
'c_lip_lst': c_lip_lst,
}
template_pkl_path = os.path.join(save_dir,
f"{os.path.basename(args.dri_video)}.pkl")
with open(template_pkl_path, "wb") as fw:
pickle.dump(template_dct, fw)
print(f"save driving motion pkl file at : {template_pkl_path}")
def run_with_pkl(args):
infer_cfg = OmegaConf.load(args.cfg)
infer_cfg.infer_params.flag_pasteback = args.paste_back
pipe = FasterLivePortraitPipeline(cfg=infer_cfg, is_animal=args.animal)
ret = pipe.prepare_source(args.src_image, realtime=args.realtime)
if not ret:
print(f"no face in {args.src_image}! exit!")
return
with open(args.dri_video, "rb") as fin:
dri_motion_infos = pickle.load(fin)
fps = int(dri_motion_infos["output_fps"])
h, w = pipe.src_imgs[0].shape[:2]
save_dir = f"./results/{datetime.datetime.now().strftime('%Y-%m-%d-%H%M%S')}"
os.makedirs(save_dir, exist_ok=True)
# render output video
if not args.realtime:
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
vsave_crop_path = os.path.join(save_dir,
f"{os.path.basename(args.src_image)}-{os.path.basename(args.dri_video)}-crop.mp4")
vout_crop = cv2.VideoWriter(vsave_crop_path, fourcc, fps, (512, 512))
vsave_org_path = os.path.join(save_dir,
f"{os.path.basename(args.src_image)}-{os.path.basename(args.dri_video)}-org.mp4")
vout_org = cv2.VideoWriter(vsave_org_path, fourcc, fps, (w, h))
infer_times = []
motion_lst = dri_motion_infos["motion"]
c_eyes_lst = dri_motion_infos["c_eyes_lst"] if "c_eyes_lst" in dri_motion_infos else dri_motion_infos[
"c_d_eyes_lst"]
c_lip_lst = dri_motion_infos["c_lip_lst"] if "c_lip_lst" in dri_motion_infos else dri_motion_infos["c_d_lip_lst"]
frame_num = len(motion_lst)
for frame_ind in tqdm(range(frame_num)):
t0 = time.time()
first_frame = frame_ind == 0
dri_motion_info_ = [motion_lst[frame_ind], c_eyes_lst[frame_ind], c_lip_lst[frame_ind]]
out_crop, out_org = pipe.run_with_pkl(dri_motion_info_, pipe.src_imgs[0], pipe.src_infos[0],
first_frame=first_frame)
if out_crop is None:
print(f"no face in driving frame:{frame_ind}")
continue
infer_times.append(time.time() - t0)
# print(time.time() - t0)
out_crop = cv2.cvtColor(out_crop, cv2.COLOR_RGB2BGR)
if not args.realtime:
vout_crop.write(out_crop)
out_org = cv2.cvtColor(out_org, cv2.COLOR_RGB2BGR)
vout_org.write(out_org)
else:
if infer_cfg.infer_params.flag_pasteback:
out_org = cv2.cvtColor(out_org, cv2.COLOR_RGB2BGR)
cv2.imshow('Render, Q > exit, S > Stitching, Z > RelativeMotion, X > AnimationRegion, C > CropDrivingVideo, KL > AdjustSourceScale, NM > AdjustDriverScale, Space > Webcamassource, R > SwitchRealtimeWebcamUpdate',out_org)
else:
# image show in realtime mode
cv2.imshow('Render, Q > exit, S > Stitching, Z > RelativeMotion, X > AnimationRegion, C > CropDrivingVideo, KL > AdjustSourceScale, NM > AdjustDriverScale, Space > Webcamassource, R > SwitchRealtimeWebcamUpdate', out_crop)
# Press the 'q' key to exit the loop, r to switch realtime src_webcam update, spacebar to switch sourceisWebcam
k = cv2.waitKey(1) & 0xFF
if k == ord('q'):
break
# Key for Interesting Params
if k == ord('s'):
infer_cfg.infer_params.flag_stitching = not infer_cfg.infer_params.flag_stitching
print('flag_stitching:'+str(infer_cfg.infer_params.flag_stitching))
if k == ord('z'):
infer_cfg.infer_params.flag_relative_motion = not infer_cfg.infer_params.flag_relative_motion
print('flag_relative_motion:'+str(infer_cfg.infer_params.flag_relative_motion))
if k == ord('x'):
if infer_cfg.infer_params.animation_region == "all": infer_cfg.infer_params.animation_region = "exp", print('animation_region = "exp"')
else:infer_cfg.infer_params.animation_region = "all", print('animation_region = "all"')
if k == ord('c'):
infer_cfg.infer_params.flag_crop_driving_video = not infer_cfg.infer_params.flag_crop_driving_video
print('flag_crop_driving_video:'+str(infer_cfg.infer_params.flag_crop_driving_video))
if k == ord('v'):
infer_cfg.infer_params.flag_pasteback = not infer_cfg.infer_params.flag_pasteback
print('flag_pasteback:'+str(infer_cfg.infer_params.flag_pasteback))
if k == ord('a'):
infer_cfg.infer_params.flag_normalize_lip = not infer_cfg.infer_params.flag_normalize_lip
print('flag_normalize_lip:'+str(infer_cfg.infer_params.flag_normalize_lip))
if k == ord('d'):
infer_cfg.infer_params.flag_source_video_eye_retargeting = not infer_cfg.infer_params.flag_source_video_eye_retargeting
print('flag_source_video_eye_retargeting:'+str(infer_cfg.infer_params.flag_source_video_eye_retargeting))
if k == ord('f'):
infer_cfg.infer_params.flag_video_editing_head_rotation = not infer_cfg.infer_params.flag_video_editing_head_rotation
print('flag_video_editing_head_rotation:'+str(infer_cfg.infer_params.flag_video_editing_head_rotation))
if k == ord('g'):
infer_cfg.infer_params.flag_eye_retargeting = not infer_cfg.infer_params.flag_eye_retargeting
print('flag_eye_retargeting:'+str(infer_cfg.infer_params.flag_eye_retargeting))
if k == ord('k'):
infer_cfg.crop_params.src_scale -= 0.1
ret = pipe.prepare_source(args.src_image, realtime=args.realtime)
print('src_scale:'+str(infer_cfg.crop_params.src_scale))
if k == ord('l'):
infer_cfg.crop_params.src_scale += 0.1
ret = pipe.prepare_source(args.src_image, realtime=args.realtime)
print('src_scale:'+str(infer_cfg.crop_params.src_scale))
if k == ord('n'):
infer_cfg.crop_params.dri_scale -= 0.1
print('dri_scale:'+str(infer_cfg.crop_params.dri_scale))
if k == ord('m'):
infer_cfg.crop_params.dri_scale += 0.1
print('dri_scale:'+str(infer_cfg.crop_params.dri_scale))
if not args.realtime:
vout_crop.release()
vout_org.release()
if video_has_audio(args.dri_video):
vsave_crop_path_new = os.path.splitext(vsave_crop_path)[0] + "-audio.mp4"
subprocess.call(
[FFMPEG, "-i", vsave_crop_path, "-i", args.dri_video,
"-b:v", "10M", "-c:v",
"libx264", "-map", "0:v", "-map", "1:a",
"-c:a", "aac",
"-pix_fmt", "yuv420p", vsave_crop_path_new, "-y", "-shortest"])
vsave_org_path_new = os.path.splitext(vsave_org_path)[0] + "-audio.mp4"
subprocess.call(
[FFMPEG, "-i", vsave_org_path, "-i", args.dri_video,
"-b:v", "10M", "-c:v",
"libx264", "-map", "0:v", "-map", "1:a",
"-c:a", "aac",
"-pix_fmt", "yuv420p", vsave_org_path_new, "-y", "-shortest"])
print(vsave_crop_path_new)
print(vsave_org_path_new)
else:
print(vsave_crop_path)
print(vsave_org_path)
else:
cv2.destroyAllWindows()
print(
"inference median time: {} ms/frame, mean time: {} ms/frame".format(np.median(infer_times) * 1000,
np.mean(infer_times) * 1000))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Faster Live Portrait Pipeline')
parser.add_argument('--src_image', required=False, type=str, default="assets/examples/source/s12.jpg",
help='source image')
parser.add_argument('--dri_video', required=False, type=str, default="assets/examples/driving/d14.mp4",
help='driving video')
parser.add_argument('--cfg', required=False, type=str, default="configs/onnx_infer.yaml", help='inference config')
parser.add_argument('--realtime', action='store_true', help='realtime inference')
parser.add_argument('--animal', action='store_true', help='use animal model')
parser.add_argument('--paste_back', action='store_true', default=False, help='paste back to origin image')
args, unknown = parser.parse_known_args()
if args.dri_video.endswith(".pkl"):
run_with_pkl(args)
else:
run_with_video(args)
|