Spaces:
Sleeping
Sleeping
File size: 35,993 Bytes
db3da1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 |
from pycocotools.coco import COCO
import os
import random
from functools import reduce
from io import StringIO
from detectron2.utils.visualizer import Visualizer
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from scipy import stats
from cubercnn import data, util, vis
from cubercnn.config import get_cfg_defaults
from cubercnn.data.build import (build_detection_test_loader,
build_detection_train_loader)
from cubercnn.data.dataset_mapper import DatasetMapper3D
from cubercnn.data.datasets import load_omni3d_json, simple_register
from detectron2.config import get_cfg
from detectron2.data import DatasetCatalog, MetadataCatalog
from detectron2.structures.boxes import BoxMode
from detectron2.utils.logger import setup_logger
color = '#384860'
second_color = '#97a6c4'
def load_gt(dataset='SUNRGBD', mode='test', single_im=True, filter=False, img_idx=150):
# we can do this block of code to get the categories reduced number of categories in the sunrgbd dataset as there normally is 83 categories, however we only work with 38.
config_file = 'configs/Base_Omni3D.yaml'
if filter:
cfg, filter_settings = get_config_and_filter_settings(config_file)
else:
filter_settings = None
if mode == 'test':
dataset_paths_to_json = ['datasets/Omni3D/'+dataset+'_test.json']
elif mode == 'train':
dataset_paths_to_json = ['datasets/Omni3D/'+dataset+'_train.json']
# Get Image and annotations
try:
dataset = data.Omni3D(dataset_paths_to_json, filter_settings=filter_settings)
except:
print('Dataset does not exist or is not in the correct format!')
exit()
imgIds = dataset.getImgIds()
imgs = dataset.loadImgs(imgIds)
if single_im:
# img = random.choice(imgs)
# 730 and 150 are used in the report
img = imgs[img_idx]
annIds = dataset.getAnnIds(imgIds=img['id'])
else:
# get all annotations
img = imgs
annIds = dataset.getAnnIds()
anns = dataset.loadAnns(annIds)
# Extract necessary annotations
R_cams = []
center_cams = []
dimensions_all = []
cats = []
bboxes = []
for instance in anns:
if 'bbox2D_tight' in instance and instance['bbox2D_tight'][0] != -1:
bboxes.append(instance['bbox2D_tight']) # boxes are XYXY_ABS by default
elif 'bbox2D_trunc' in instance and not np.all([val==-1 for val in instance['bbox2D_trunc']]):
bboxes.append(instance['bbox2D_trunc']) # boxes are XYXY_ABS by default
elif 'bbox2D_proj' in instance:
bboxes.append(instance['bbox2D_proj']) # boxes are XYXY_ABS by default
else:
continue
R_cams.append(instance['R_cam'])
center_cams.append(instance['center_cam'])
dimensions_all.append(instance['dimensions'])
cats.append(instance['category_name'])
return img, R_cams, center_cams, dimensions_all, cats, bboxes
def plot_scene(image_path, output_dir, center_cams, dimensions_all, Rs, K, cats, bboxes):
# TODO: currently this function does not filter out invalid annotations, but it should have the option to do so.
# Compute meshes
meshes = []
meshes_text = []
for idx, (center_cam, dimensions, pose, cat) in enumerate(zip(
center_cams, dimensions_all, Rs, cats
)):
bbox3D = center_cam + dimensions
meshes_text.append('{}'.format(cat))
color = [c/255.0 for c in util.get_color(idx)]
box_mesh = util.mesh_cuboid(bbox3D, pose, color=color)
meshes.append(box_mesh)
image_name = util.file_parts(image_path)[1]
print('File: {} with {} dets'.format(image_name, len(meshes)))
np.random.seed(0)
colors = [np.concatenate([np.random.random(3), np.array([0.6])], axis=0) for _ in range(len(meshes))]
# Plot
image = util.imread('datasets/'+image_path)
if len(meshes) > 0:
im_drawn_rgb, im_topdown, _ = vis.draw_scene_view(image, np.array(K), meshes, colors=colors, text=meshes_text, scale=image.shape[0], blend_weight=0.5, blend_weight_overlay=0.85)
if False:
im_concat = np.concatenate((im_drawn_rgb, im_topdown), axis=1)
vis.imshow(im_concat)
util.imwrite(im_drawn_rgb, os.path.join(output_dir, image_name+'_boxes.jpg'))
util.imwrite(im_topdown, os.path.join(output_dir, image_name+'_novel.jpg'))
v_pred = Visualizer(image, None)
#bboxes = [[320, 150, 560, 340]] # low loss
#bboxes = [[350, 220, 440, 290]] # high loss
#bboxes = [[340, 163, 540, 297]] # fail loss
v_pred = v_pred.overlay_instances(boxes=np.array(bboxes), assigned_colors=colors)#[np.array([0.5,0,0.5])])#colors)
util.imwrite(v_pred.get_image(), os.path.join(output_dir, image_name+'_pred_boxes.jpg'))
#im_drawn_rgb, im_topdown, _ = vis.draw_scene_view(v_pred.get_image(), np.array(K), meshes, colors=colors, text=meshes_text, scale=image.shape[0], blend_weight=0.5, blend_weight_overlay=0.85)
#util.imwrite(im_drawn_rgb, os.path.join(output_dir, image_name+'_boxes_with_2d.jpg'))
else:
print('No meshes')
util.imwrite(image, os.path.join(output_dir, image_name+'_boxes.jpg'))
def show_data(dataset, filter_invalid=False, output_dir='output/playground'):
# Load Image and Ground Truths
image, Rs, center_cams, dimensions_all, cats, bboxes = load_gt(dataset, filter=filter_invalid)
# Create Output Directory
util.mkdir_if_missing(output_dir)
plot_scene(image['file_path'], output_dir, center_cams, dimensions_all, Rs, image['K'], cats, bboxes)
def category_distribution(dataset):
'''Plot a histogram of the category distribution in the dataset.'''
# Load Image and Ground Truths
image, Rs, center_cams, dimensions_all, cats, bboxes = load_gt(dataset, mode='train', single_im=False)
image_t, Rs_t, center_cams_t, dimensions_all_t, cats_t, bboxes = load_gt(dataset, mode='test', single_im=False)
config_file = 'configs/Base_Omni3D.yaml'
cfg, filter_settings = get_config_and_filter_settings(config_file)
annotation_file = 'datasets/Omni3D/SUNRGBD_train.json'
coco_api = COCO(annotation_file)
meta = MetadataCatalog.get('SUNRGBD')
cat_ids = sorted(coco_api.getCatIds(filter_settings['category_names']))
cats_sun = coco_api.loadCats(cat_ids)
thing_classes = [c["name"] for c in sorted(cats_sun, key=lambda x: x["id"])]
output_dir = 'output/figures/' + dataset
util.mkdir_if_missing(output_dir)
# histogram of categories
cats_all = cats + cats_t
# cats_unique = list(set(cats_all))
cats_unique = thing_classes
print('cats unique: ', len(cats_unique))
# make dict with count of each category
cats_count = {cat: cats_all.count(cat) for cat in cats_unique}
cats_sorted = dict(sorted(cats_count.items(), key=lambda x: x[1], reverse=True))
plt.figure(figsize=(14,5))
plt.bar(cats_sorted.keys(), cats_sorted.values())
plt.xticks(rotation=60, size=9)
plt.title('Category Distribution')
plt.savefig(os.path.join(output_dir, 'category_distribution.png'),dpi=300, bbox_inches='tight')
plt.close()
return cats_sorted
def spatial_statistics(dataset):
'''Compute spatial statistics of the dataset.
wanted to reproduce fig. 7 from the omni3D paper
however, we must standardise the images for it to work
'''
# Load Image and Ground
# this function filters out invalid images if there are no valid annotations in the image
# annnotations in each image can also be marked as is_ignore => True
image_root = 'datasets'
cfg, filter_settings = get_config_and_filter_settings()
dataset_names = ['SUNRGBD_train','SUNRGBD_test','SUNRGBD_val']
output_dir = 'output/figures/' + dataset
# this is almost the same as the simple_register function, but it also stores the model metadata
# which is needed for the load_omni3d_json function
data.register_and_store_model_metadata(None, output_dir, filter_settings=filter_settings)
data_dicts = []
for dataset_name in dataset_names:
json_file = 'datasets/Omni3D/'+dataset_name+'.json'
data_dict = load_omni3d_json(json_file, image_root, dataset_name, filter_settings, filter_empty=True)
data_dicts.extend(data_dict)
# standardise the images to a fixed size
# and map the annotations to the standardised images
std_image_size = (480//4, 640//4)
tot_outliers = 0
img = np.zeros(std_image_size)
for img_dict in data_dicts:
original_width = img_dict['width']
original_height = img_dict['height']
# Calculate the scale factor for resizing
scale_x = std_image_size[1] / original_width
scale_y = std_image_size[0] / original_height
# Update the image size in the annotation
img_dict['width'] = std_image_size[1]
img_dict['height'] = std_image_size[0]
for anno in img_dict['annotations']:
if not anno['ignore']:
# Update the 2D box coordinates (boxes are XYWH)
anno['bbox2D_tight'][0] *= scale_x
anno['bbox2D_tight'][1] *= scale_y
anno['bbox2D_tight'][2] *= scale_x
anno['bbox2D_tight'][3] *= scale_y
# get the centerpoint of the annotation as (x, y)
# x0, y0, x1, y1 = BoxMode.convert(anno['bbox2D_tight'], BoxMode.XYWH_ABS, BoxMode.XYXY_ABS)
x0, y0, x1, y1 = anno['bbox2D_tight']
x_m, y_m = int((x0+x1)/2), int((y0+y1)/2)
if x_m >= std_image_size[1] or x_m < 0:
# print(f'x out of line {x_m}')
tot_outliers += 1
elif y_m >= std_image_size[0] or y_m < 0:
# print(f'y out of line {y_m}')
tot_outliers += 1
else:
img[y_m, x_m] += 1
else:
# Remove the annotation if it is marked as ignore
img_dict['annotations'].remove(anno)
print('num center points outside frame: ', tot_outliers)
img = img/img.max()
# this point is so large that all the points become invisible, so I remove it.
img[0,0] = 0.00
img = img/img.max()
plt.figure()
plt.imshow(img, cmap='gray_r', vmin=0, vmax=1)
plt.xticks([]); plt.yticks([])
plt.title('Histogram of 2D box centre points')
# plt.box(False)
plt.savefig(os.path.join(output_dir, '2d_histogram.png'),dpi=300, bbox_inches='tight')
plt.close()
return
def AP_vs_no_of_classes(dataset, files:list=['output/Baseline_sgd/log.txt','output/omni_equalised/log.txt','output/omni_pseudo_gt/log.txt','output/proposal_AP/log.txt','output/exp_10_iou_zpseudogt_dims_depthrange_rotalign_ground/log.txt']):
'''Search the log file for the precision numbers corresponding to the last iteration
then parse it in as a pd.DataFrame and plot the AP vs number of classes'''
# search the file from the back until the line
# cubercnn.vis.logperf INFO: Performance for each of 38 categories on SUNRGBD_test:
# is found
target_line = "cubercnn.vis.logperf INFO: Performance for each of 38 categories on SUNRGBD_test:"
model_names = ['Base Cube R-CNN', 'Time-eq.', 'Pseudo GT', 'Proposal', 'Weak loss']
df = []
for file, model_name in zip(files, model_names):
df_i = search_file_backwards(file, target_line).rename(columns={'AP3D':f'{model_name} AP3D', 'AP2D':f'{model_name} AP2D'})
assert df_i is not None, 'df not found'
df.append(df_i)
# merge df's
df = reduce(lambda x, y: pd.merge(x, y, on = 'category'), df)
# sort df by ap3d of model 1
df = df.sort_values(by='Base Cube R-CNN AP3D', ascending=False)
cats = category_distribution(dataset)
df.sort_values(by='category', inplace=True)
cats = dict(sorted(cats.items()))
merged_df = pd.merge(df.reset_index(), pd.DataFrame(cats.values(), columns=['cats']), left_index=True, right_index=True)
merged_df = merged_df.sort_values(by='cats')
merged_df = merged_df.drop('index',axis=1)
merged_df = merged_df.reset_index(drop=True)
fig, ax = plt.subplots(figsize=(12,8))
for model_name in model_names:
if model_name == 'Base Cube R-CNN':
scale = 114
else:
scale = 10.15
# convert the annotation time to hours
time = merged_df['cats']*scale / 60 / 60
ax.scatter(time, merged_df[f'{model_name} AP3D'].values, s=merged_df[f'{model_name} AP2D'].values*2, alpha=0.5, label=model_name)
for i, txt in enumerate(merged_df['category']):
ax.text(time[i], merged_df[f'{model_name} AP3D'].values[i], txt, fontsize=merged_df[f'{model_name} AP3D'].values[i]*0.3+3)
correlation_coef = np.corrcoef(time, merged_df[f'{model_name} AP3D'].values)[0, 1]
line_fit = np.polyfit(time, merged_df[f'{model_name} AP3D'].values, 1)
# plot the line of best fit
ax.plot(time, np.poly1d(line_fit)(time), linestyle='--',alpha=0.5, label=f'Linear fit (R={correlation_coef:.2f})')
# Set labels and title
ax.set_xlabel('Annotation time (h)')
ax.set_ylabel('AP3D')
ax.set_xscale('log')
ax.set_title('AP3D vs class-wise annotation time')
ax.legend(title='AP3D scaled by AP2D')
# Save the plot
plt.savefig('output/figures/'+dataset+'/AP_vs_no_of_classes_all.png', dpi=300, bbox_inches='tight')
plt.close()
return
def AP3D_vs_AP2D(dataset, mode = 'standard', files=['output/Baseline_sgd/log.txt','output/omni_equalised/log.txt','output/omni_pseudo_gt/log.txt','output/proposal_AP/log.txt','output/exp_10_iou_zpseudogt_dims_depthrange_rotalign_ground/log.txt']):
'''Search the log file for the precision numbers corresponding to the last iteration
then parse it in as a pd.DataFrame and plot the AP vs number of classes'''
# search the file from the back until the line
# cubercnn.vis.logperf INFO: Performance for each of 38 categories on SUNRGBD_test:
# is found
target_line = "cubercnn.vis.logperf INFO: Performance for each of 38 categories on SUNRGBD_test:"
model_names = ['Base Cube R-CNN', 'Time-eq.', 'Pseudo GT', 'Proposal', 'Weak loss']
df = []
for file, model_name in zip(files, model_names):
df_i = search_file_backwards(file, target_line).rename(columns={'AP3D':f'{model_name} AP3D', 'AP2D':f'{model_name} AP2D'})
assert df_i is not None, 'df not found'
df.append(df_i)
# merge df's
df = reduce(lambda x, y: pd.merge(x, y, on = 'category'), df)
# sort df by ap3d of model 1
df = df.sort_values(by='Base Cube R-CNN AP3D', ascending=False)
cats = category_distribution(dataset)
df.sort_values(by='category', inplace=True)
cats = dict(sorted(cats.items()))
merged_df = pd.merge(df.reset_index(), pd.DataFrame(cats.values(), columns=['cats']), left_index=True, right_index=True)
merged_df = merged_df.sort_values(by='cats')
merged_df = merged_df.drop('index',axis=1)
merged_df = merged_df.reset_index(drop=True)
# mode = 'standard' # 'log'
fig, ax = plt.subplots(figsize=(12,8))
for model_name in model_names:
if mode == 'standard': s=merged_df[f'{model_name} AP2D'].values*2
else: s = None
# we have to add 0.001 to the values to avoid log(0) errors
ax.scatter(merged_df[f'{model_name} AP2D'].values+0.001, merged_df[f'{model_name} AP3D'].values+0.001, alpha=0.5, label=model_name, s=s)
for i, txt in enumerate(merged_df['category']):
if mode == 'standard': fontsize=merged_df[f'{model_name} AP3D'].values[i]*0.3+3
else: fontsize=7
ax.text(merged_df[f'{model_name} AP2D'].values[i]+0.001, merged_df[f'{model_name} AP3D'].values[i]+0.001, txt,fontsize=fontsize)
# plot average line
ax.plot((0, 70), (0, 70), linestyle='--', color=color, alpha=0.3, label=f'AP2D=AP3D')
# Set labels and title
if mode == 'log':
ax.set_xscale('log')
ax.set_yscale('log')
ax.set_xlabel('AP2D')
ax.set_ylabel('AP3D')
# ax.set_xlim(0.1, 75); ax.set_ylim(0.1, 75)
ax.set_title('AP in 3D vs AP in 2D')
ax.legend()
# if mode == 'log':
# # for some obscure reason the log plot fails to save
# plt.show()
# # Save the plot
# else:
plt.savefig('output/figures/'+dataset+f'/AP3D_vs_AP2D_all_{mode}.png', dpi=300, bbox_inches='tight')
plt.close()
return
def search_file_backwards(file_path:str, target_line:str) -> pd.DataFrame:
'''Search a file backwards for a target line and return the table of the performance of the model. The point of this is to parse the part of the log file that looks like this
| category | AP2D | AP3D | category | AP2D | AP3D | category | AP2D | AP3D |
|:----------:|:--------|:----------|:-----------:|:---------|:---------|:------------:|:----------|:-----------|
| chair | 45.9374 | 53.4913 | table | 34.5982 | 39.7769 | cabinet | 16.3693 | 14.0878 |
| lamp | 24.8081 | 7.67653 | books | 0.928978 | 0.599711 | sofa | 49.2354 | 57.9649 |
...
To a pandas DataFrame that has 3 columns: category, AP2D, AP3D'''
import re
with open(file_path, 'r') as file:
lines = file.readlines()
for i, line in enumerate(reversed(lines)):
is_found = re.search(f'.*{target_line}$', line)
if is_found:
table = lines[-i:-i+15]
tab_as_str= ' '.join(table)
# i know this is really ugly
df = pd.read_csv( StringIO(tab_as_str.replace(' ', '')), # Get rid of whitespaces
sep='|',).dropna(axis=1, how='all').drop(0)
# https://stackoverflow.com/a/65884212
df.columns = pd.MultiIndex.from_frame(df.columns.str.split('.', expand=True)
.to_frame().fillna('0'))
df = df.stack().reset_index(level=1, drop=True).reset_index().drop('index', axis=1)
df['AP3D'] = df['AP3D'].astype(float)
df['AP2D'] = df['AP2D'].astype(float)
return df
return None
def get_config_and_filter_settings(config_file='configs/Base_Omni3D.yaml'):
# we must load the config file to get the filter settings
cfg = get_cfg()
get_cfg_defaults(cfg)
cfg.merge_from_file(config_file)
# must setup logger to get info about filtered out annotations
setup_logger(output=cfg.OUTPUT_DIR, name="cubercnn")
filter_settings = data.get_filter_settings_from_cfg(cfg)
return cfg, filter_settings
def init_dataloader():
''' dataloader stuff.
currently not used anywhere, because I'm not sure what the difference between the omni3d dataset and load omni3D json functions are. this is a 3rd alternative to this. The train script calls something similar to this.'''
cfg, filter_settings = get_config_and_filter_settings()
dataset_names = ['SUNRGBD_train','SUNRGBD_val']
dataset_paths_to_json = ['datasets/Omni3D/'+dataset_name+'.json' for dataset_name in dataset_names]
for dataset_name in dataset_names:
simple_register(dataset_name, filter_settings, filter_empty=True)
# Get Image and annotations
datasets = data.Omni3D(dataset_paths_to_json, filter_settings=filter_settings)
data.register_and_store_model_metadata(datasets, cfg.OUTPUT_DIR, filter_settings)
thing_classes = MetadataCatalog.get('omni3d_model').thing_classes
dataset_id_to_contiguous_id = MetadataCatalog.get('omni3d_model').thing_dataset_id_to_contiguous_id
infos = datasets.dataset['info']
dataset_id_to_unknown_cats = {}
possible_categories = set(i for i in range(cfg.MODEL.ROI_HEADS.NUM_CLASSES + 1))
dataset_id_to_src = {}
for info in infos:
dataset_id = info['id']
known_category_training_ids = set()
if not dataset_id in dataset_id_to_src:
dataset_id_to_src[dataset_id] = info['source']
for id in info['known_category_ids']:
if id in dataset_id_to_contiguous_id:
known_category_training_ids.add(dataset_id_to_contiguous_id[id])
# determine and store the unknown categories.
unknown_categories = possible_categories - known_category_training_ids
dataset_id_to_unknown_cats[dataset_id] = unknown_categories
from detectron2 import data as d2data
NoOPaug = d2data.transforms.NoOpTransform()
# def NoOPaug(input):
# return input
# TODO: how to load in images without having them resized?
# data_mapper = DatasetMapper3D(cfg, augmentations=[NoOPaug], is_train=True)
data_mapper = DatasetMapper3D(cfg, is_train=True)
# test loader does resize images, like the train loader does
# this is the function that filters out the invalid annotations
data_loader = build_detection_train_loader(cfg, mapper=data_mapper, dataset_id_to_src=dataset_id_to_src, num_workers=1)
# data_loader = build_detection_test_loader(cfg, dataset_names[1], num_workers=1)
# this is a detectron 2 thing that we just have to do
data_mapper.dataset_id_to_unknown_cats = dataset_id_to_unknown_cats
for item in data_loader:
print(item)
def vol_over_cat(dataset):
'''
Errorbarplot of volume of object category
'''
# Load Image and Ground Truths
image, Rs, center_cams, dimensions_all, cats, bboxes = load_gt(dataset, mode='train', single_im=False)
image_t, Rs_t, center_cams_t, dimensions_all_t, cats_t, bboxes = load_gt(dataset, mode='test', single_im=False)
output_dir = 'output/figures/' + dataset
util.mkdir_if_missing(output_dir)
# histogram of categories
cats_all = cats + cats_t
cats_unique = list(set(cats_all))
# Create dictionary with np.prod(dimensions) for each category
cats_vol = {cat: [] for cat in cats_unique}
for cat, dims in zip(cats, dimensions_all):
if np.prod(dims) > 0:
cats_vol[cat].append(np.prod(dims))
for cat, dims in zip(cats_t, dimensions_all_t):
if np.prod(dims) > 0:
cats_vol[cat].append(np.prod(dims))
# make dict with mean and std of each category
cats_mean = {cat: np.mean(cats_vol[cat]) for cat in cats_unique}
cats_error = {cat: np.std(cats_vol[cat]) for cat in cats_unique}
keys = np.array(list(cats_mean.keys()))
means = np.array(list(cats_mean.values()))
errors = np.array(list(cats_error.values()))
# Calculate Z-scores for 5th and 95th percentiles
from scipy.stats import norm
z_lower = norm.ppf(0.05)
z_upper = norm.ppf(0.95)
bounds = []
for mean, std in zip(means, errors):
# Calculate the lower and upper bounds of the interval
lower_bound = mean + z_lower * std
upper_bound = mean + z_upper * std
bounds.append((max(0,lower_bound), upper_bound))
plt.figure(figsize=(14,5))
for i, (mean, (lower_bound, upper_bound)) in enumerate(zip(means, bounds)):
plt.vlines(x=i, ymin=lower_bound, ymax=upper_bound, color='gray', linewidth=2)
plt.plot([i], [mean], marker='o', color=color)
plt.xticks(np.arange(len(keys)), keys, rotation=60, size=9)
plt.xlabel('Category')
plt.ylabel('Volume')
plt.title('Category Distribution')
plt.savefig(os.path.join(output_dir, 'volume_distribution.png'), dpi=300, bbox_inches='tight')
plt.close()
def gt_stats(dataset):
'''
Errorbarplot of volume of object category
'''
# Load Image and Ground Truths
image, Rs, center_cams, dimensions_all, cats, bboxes = load_gt(dataset, mode='train', single_im=False)
image_t, Rs_t, center_cams_t, dimensions_all_t, cats_t, bboxes = load_gt(dataset, mode='test', single_im=False)
output_dir = 'output/figures/' + dataset
util.mkdir_if_missing(output_dir)
# histogram of centers
center_all = center_cams + center_cams_t
center_all = np.transpose(np.array(center_all))
# Filter -1 annotations
valid_columns = center_all[0] != -1
center_all = center_all[:,valid_columns]
x_label = ['x', 'y', 'z']
fig, axes = plt.subplots(1, len(center_all), figsize=(18, 5))
for i in range(len(center_all)):
axes[i].hist(center_all[i], color=color, bins=20)
axes[i].set_xlabel(x_label[i])
axes[i].set_ylabel('Count')
fig.suptitle('Center Distribution in Meters')
plt.savefig(os.path.join(output_dir, 'center.png'), dpi=300, bbox_inches='tight')
plt.close()
# histogram of dimensions
dimensions_all = dimensions_all + dimensions_all_t
dimensions_all = np.transpose(np.array(dimensions_all))
# Filter -1 annotations
valid_columns = dimensions_all[0] != -1
dimensions_all = dimensions_all[:,valid_columns]
x_label = ['w', 'h', 'l']
fig, axes = plt.subplots(1, len(dimensions_all), figsize=(18, 5))
for i in range(len(dimensions_all)):
axes[i].hist(dimensions_all[i], color=color, bins=20)
axes[i].set_xlabel(x_label[i])
axes[i].set_ylabel('Count')
fig.suptitle('Dimensions Distribution in Meters')
plt.savefig(os.path.join(output_dir, 'dimensions.png'), dpi=300, bbox_inches='tight')
plt.close()
def report_figures(dataset, filter_invalid=False, output_dir='output/report_images'):
# Create Output Directory
util.mkdir_if_missing(output_dir)
util.mkdir_if_missing(output_dir+'/low_green')
util.mkdir_if_missing(output_dir+'/high_green')
util.mkdir_if_missing(output_dir+'/fail_green')
util.mkdir_if_missing(output_dir+'/low_red')
util.mkdir_if_missing(output_dir+'/high_red')
util.mkdir_if_missing(output_dir+'/fail_red')
util.mkdir_if_missing(output_dir+'/low_blue')
util.mkdir_if_missing(output_dir+'/high_blue')
util.mkdir_if_missing(output_dir+'/fail_blue')
# Load Image and Ground Truths
image, Rs, center_cams, dimensions_all, cats, bboxes = load_gt(dataset, filter=filter_invalid, img_idx=352)
gt_center = center_cams[1:]
gt_dim = dimensions_all[1:]
gt_Rs = Rs[1:]
cats = cats[1:]
gt_bb = bboxes[1:]
# Make low loss boxes for IoU, ps. z and proj
center = gt_center[-1]
dim = gt_dim[-1]
R = gt_Rs[-1]
cat = cats[-1]
bb = gt_bb[-1]
plot_scene(image['file_path'], output_dir+'/low_green', [center], [dim], [R], image['K'], [cat], [bb])
# Make high loss boxes for IoU, ps. z and proj
center = [gt_center[-1][0],gt_center[-1][1],gt_center[-1][2]+3]
dim = gt_dim[-1]
R = gt_Rs[-1]
cat = cats[-1]
bb = gt_bb[-1]
plot_scene(image['file_path'], output_dir+'/high_green', [center], [dim], [R], image['K'], [cat], [bb])
# Make fail loss boxes for IoU, ps. z and proj
center = [gt_center[-1][0]-0.03,gt_center[-1][1],gt_center[-1][2]]
dim = [0.05,0.71,0.05]
R = util.euler2mat(np.array([0,0,45]))
cat = cats[-1]
bb = gt_bb[-1]
plot_scene(image['file_path'], output_dir+'/fail_green', [center], [dim], [R], image['K'], [cat], [bb])
# Make low loss boxes for range and seg
center = gt_center[0]
dim = gt_dim[0]
R = gt_Rs[0]
cat = cats[0]
bb = gt_bb[0]
plot_scene(image['file_path'], output_dir+'/low_red', [center], [dim], [R], image['K'], [cat], [bb])
# Make high loss boxes for range and seg
center = [gt_center[0][0],gt_center[0][1]+0.3,gt_center[0][2]]
dim = [gt_dim[0][0]+1.5,gt_dim[0][1]-0.6,gt_dim[0][2]]
R = gt_Rs[0]
cat = cats[0]
bb = gt_bb[0]
plot_scene(image['file_path'], output_dir+'/high_red', [center], [dim], [R], image['K'], [cat], [bb])
# Make fail loss boxes for range and seg
center = [gt_center[0][0]+0.25,gt_center[0][1],gt_center[0][2]]
dim = [gt_dim[0][0]+0.7,gt_dim[0][1],gt_dim[0][2]]
R = gt_Rs[-1]
cat = cats[-1]
bb = gt_bb[-1]
plot_scene(image['file_path'], output_dir+'/fail_red', [center], [dim], [R], image['K'], [cat], [bb])
# Make low loss boxes for dim, pose and align
center = gt_center[1:]
dim = [[gt_dim[1][0]*1.5,gt_dim[1][1],gt_dim[1][2]*1.5], gt_dim[2]]
R = gt_Rs[1:]
cat = cats[1:]
bb = gt_bb[1:]
plot_scene(image['file_path'], output_dir+'/low_blue', center, dim, R, image['K'], cat, bb)
# Make high loss boxes for dim, pose and align
center = gt_center[1:]
dim = gt_dim[1:]
R = [util.euler2mat(util.mat2euler(np.array(gt_Rs[1]))+[20,0,0]), util.euler2mat(util.mat2euler(np.array(gt_Rs[2]))+[-20,0,0])]
cat = cats[1:]
bb = gt_bb[1:]
plot_scene(image['file_path'], output_dir+'/high_blue', center, dim, R, image['K'], cat, bb)
# Make fail loss boxes for dim, pose and align
center = gt_center[1:]
dim = [[gt_dim[1][0],gt_dim[1][1],gt_dim[1][2]],[gt_dim[2][1],gt_dim[2][0],gt_dim[2][2]]]
R = [util.euler2mat(util.mat2euler(np.array(gt_Rs[1]))+[1,0,0]), util.euler2mat(util.mat2euler(np.array(gt_Rs[2]))+[1,0,0])]
cat = cats[1:]
bb = gt_bb[1:]
plot_scene(image['file_path'], output_dir+'/fail_blue', center, dim, R, image['K'], cat, bb)
return True
def gt_stats_in_terms_of_sigma(dataset):
'''
Errorbarplot of volume of object category
'''
# Load Image and Ground Truths
image, Rs, center_cams, dimensions_all, cats, bboxes = load_gt(dataset, mode='train', single_im=False)
image_t, Rs_t, center_cams_t, dimensions_all_t, cats_t, bboxes = load_gt(dataset, mode='test', single_im=False)
output_dir = 'output/figures/' + dataset
util.mkdir_if_missing(output_dir)
# histogram of centers
center_all = center_cams + center_cams_t
center_all = np.transpose(np.array(center_all))
# Filter -1 annotations
valid_columns = center_all[0] != -1
center_all = center_all[:,valid_columns]
x_label = ['x', 'y', 'z']
fig, axes = plt.subplots(1, len(center_all), figsize=(18, 5))
for i in range(len(center_all)):
axes[i].hist(center_all[i], color=color, bins=20)
axes[i].set_xlabel(x_label[i])
axes[i].set_ylabel('Count')
fig.suptitle('Center Distribution in Meters')
plt.savefig(os.path.join(output_dir, 'center.png'), dpi=300, bbox_inches='tight')
plt.close()
# histogram of dimensions
dimensions_all = dimensions_all + dimensions_all_t
dimensions_all = np.transpose(np.array(dimensions_all))
# Filter -1 annotations
valid_columns = dimensions_all[0] != -1
dimensions_all = dimensions_all[:,valid_columns]
x_label = ['w', 'h', 'l']
fig, axes = plt.subplots(1, len(dimensions_all), figsize=(18, 5))
for i in range(len(dimensions_all)):
axes[i].hist(dimensions_all[i], color=color, bins=20, density=True)
# Plot normal distribution
mu, sigma = np.mean(dimensions_all[i]), np.std(dimensions_all[i])
x = np.linspace(mu - 3 * sigma, mu + 3 * sigma, 100)
axes[i].plot(x, stats.norm.pdf(x, mu, sigma))
y_lim = axes[i].get_ylim()[1]
axes[i].vlines(mu+sigma, 0, y_lim, linestyle='--', label='$\sigma$', color='gray')
axes[i].vlines(mu-sigma, 0, y_lim, linestyle='--', label='$\sigma$', color='gray')
axes[i].vlines(1.4, 0, y_lim, linestyle='--', color='red', label='pred')
if i != 0:
axes[i].plot((mu+sigma,1.4), (y_lim/2,y_lim/2), color='c', label='loss')
axes[i].set_xlabel(x_label[i])
axes[i].set_ylabel('density')
# Set xticks in terms of sigma
xticks = [mu - 3 * sigma, mu - 2 * sigma, mu - sigma, mu, mu + sigma, mu + 2 * sigma, mu + 3 * sigma, mu + 4 * sigma, mu + 5 * sigma, mu + 6 * sigma]
xticklabels = ['-3$\sigma$', '-2$\sigma$', '-$\sigma$', '0', '$\sigma$', '$2\sigma$', '$3\sigma$', '$4\sigma$', '$5\sigma$', '$6\sigma$']
axes[i].set_xticks(xticks)
axes[i].set_xticklabels(xticklabels)
axes[-1].legend()
fig.suptitle('Dimensions Distribution in Meters')
plt.savefig(os.path.join(output_dir, 'dimensions_sigma.png'), dpi=300, bbox_inches='tight')
plt.close()
return True
def parallel_coordinate_plot(dataset='SUNRGBD', files:list=['output/Baseline_sgd/log.txt','output/omni_equalised/log.txt','output/omni_pseudo_gt/log.txt','output/proposal_AP/log.txt','output/exp_10_iou_zpseudogt_dims_depthrange_rotalign_ground/log.txt']):
'''Search the log file for the precision numbers corresponding to the last iteration
then parse it in as a pd.DataFrame and plot the AP vs number of classes'''
import plotly.graph_objects as go
# df with each model as a column and performance for each class as rows
# search the file from the back until the line
# cubercnn.vis.logperf INFO: Performance for each of 38 categories on SUNRGBD_test:
# is found
target_line = "cubercnn.vis.logperf INFO: Performance for each of 38 categories on SUNRGBD_test:"
model_names = ['Base Cube R-CNN', 'Time-eq.', 'Pseudo GT', 'Proposal', 'Weak loss']
df = []
for file, model_name in zip(files, model_names):
df_i = search_file_backwards(file, target_line).drop(['AP2D'], axis=1).rename(columns={'AP3D':model_name})
assert df_i is not None, 'df not found'
df.append(df_i)
# merge df's
df = reduce(lambda x, y: pd.merge(x, y, on = 'category'), df)
# sort df by ap3d of model 1
df = df.sort_values(by='Base Cube R-CNN', ascending=False)
# encode each category as a number
df['category_num'] = list(reversed([i for i in range(len(df))]))
# https://plotly.com/python/parallel-coordinates-plot/
fig = go.Figure(data=
go.Parcoords(
line = dict(color = df.iloc[:, 1],
# colorscale = [[0,'purple'],[0.5,'lightseagreen'],[1,'gold']]),
colorscale = 'Viridis'),
visible = True,
dimensions = list([
dict(tickvals = df['category_num'],
ticktext = df['category'],
label = 'Categories', values = df['category_num']),
dict(range = [0,70],
constraintrange = [5,70],
label = model_names[0], values = df[model_names[0]]),
dict(range = [0,40],
label = model_names[2], values = df[model_names[2]]),
dict(range = [0,40],
label = model_names[4], values = df[model_names[4]]),
dict(range = [0,40],
label = model_names[1], values = df[model_names[1]]),
dict(range = [0,40],
label = model_names[3], values = df[model_names[3]]),
]),
)
)
fig.update_layout(
plot_bgcolor = 'white',
paper_bgcolor = 'white',
title={
'text': "AP3D per category for each model",
'y':0.96,
'x':0.5,
'xanchor': 'center',
'yanchor': 'top'},
margin=dict(l=65, r=25, t=80, b=5)
)
# pip install --upgrade "kaleido==0.1.*"
fig.write_image('output/figures/SUNRGBD/parallel_coordinate_plot.png', scale=3, format='png')
# fig.show()
if __name__ == '__main__':
# show_data('SUNRGBD', filter_invalid=False, output_dir='output/playground/no_filter') #{SUNRGBD,ARKitScenes,KITTI,nuScenes,Objectron,Hypersim}
# show_data('SUNRGBD', filter_invalid=True, output_dir='output/playground/with_filter') #{SUNRGBD,ARKitScenes,KITTI,nuScenes,Objectron,Hypersim}
# _ = category_distribution('SUNRGBD')
AP_vs_no_of_classes('SUNRGBD')
#spatial_statistics('SUNRGBD')
# AP3D_vs_AP2D('SUNRGBD')
# AP3D_vs_AP2D('SUNRGBD', mode='log')
# init_dataloader()
# vol_over_cat('SUNRGBD')
# gt_stats('SUNRGBD')
# gt_stats_in_terms_of_sigma('SUNRGBD')
#gt_stats('SUNRGBD')
# report_figures('SUNRGBD')
parallel_coordinate_plot()
|