Spaces:
Runtime error
Runtime error
File size: 6,892 Bytes
b1c03d1 29c8969 875d848 60cf662 875d848 60cf662 875d848 38ddf80 2bf8c3e e19df82 6b614e8 875d848 e19df82 875d848 60cf662 875d848 e19df82 875d848 e19df82 38ddf80 875d848 29c8969 e19df82 60cf662 e19df82 60cf662 e19df82 60cf662 e19df82 60cf662 e19df82 60cf662 e19df82 60cf662 e19df82 60cf662 e19df82 60cf662 e19df82 60cf662 38ddf80 e19df82 875d848 38ddf80 6b614e8 60cf662 875d848 e19df82 875d848 38ddf80 e19df82 875d848 38ddf80 e19df82 875d848 60cf662 e19df82 60cf662 875d848 38ddf80 875d848 e19df82 875d848 e19df82 875d848 e19df82 875d848 e19df82 875d848 60cf662 875d848 60cf662 e19df82 875d848 e19df82 60cf662 e19df82 60cf662 e19df82 875d848 e19df82 60cf662 e19df82 875d848 60cf662 e19df82 60cf662 e19df82 875d848 e19df82 60cf662 e19df82 60cf662 875d848 e19df82 29c8969 e19df82 875d848 60cf662 e19df82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import os
import asyncio
import logging
from datetime import datetime, timedelta
from telegram import Update
from telegram.ext import ApplicationBuilder, CommandHandler, MessageHandler, filters, ContextTypes
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import re
import nltk
from nltk.tokenize import sent_tokenize
import torch
# تنظیم مسیر cache برای Transformers
#cache_dir = '/tmp/transformers_cache'
#os.environ['TRANSFORMERS_CACHE'] = cache_dir
#os.environ['HF_HOME'] = cache_dir
#os.makedirs(cache_dir, exist_ok=True)
# تنظیم مسیر nltk
try:
nltk.download('punkt', download_dir='./nltk_data', quiet=True)
nltk.data.path.append('./nltk_data')
except:
pass
# تنظیمات لاگ
logging.basicConfig(
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
level=logging.INFO
)
logger = logging.getLogger(__name__)
# اطلاعات مدل
MODEL_NAME = "nafisehNik/mt5-persian-summary"
model = None
tokenizer = None
# ذخیره پیامها برای هر چت
MAX_MESSAGES_PER_CHAT = 1000
class MessageStore:
def __init__(self):
self.messages = {}
def add_message(self, chat_id, user_id, username, text, timestamp):
if chat_id not in self.messages:
self.messages[chat_id] = []
if len(self.messages[chat_id]) >= MAX_MESSAGES_PER_CHAT:
self.messages[chat_id] = self.messages[chat_id][-MAX_MESSAGES_PER_CHAT // 2:]
self.messages[chat_id].append({
"user_id": user_id,
"username": username,
"text": text,
"timestamp": timestamp
})
def get_messages(self, chat_id, count=50, hours_back=None):
if chat_id not in self.messages:
return []
messages = self.messages[chat_id]
if hours_back:
cutoff = datetime.now() - timedelta(hours=hours_back)
messages = [m for m in messages if m["timestamp"] >= cutoff]
return messages[-count:] if count else messages
message_store = MessageStore()
def load_persian_model():
global model, tokenizer
try:
logger.info(f"Loading Persian model: {MODEL_NAME}")
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForSeq2SeqLM.from_pretrained(
MODEL_NAME,
torch_dtype=torch.float32
)
model.eval()
logger.info("Model loaded successfully")
except Exception as e:
logger.error(f"Error loading Persian model: {e}")
model, tokenizer = None, None
def preprocess_persian_text(text):
text = re.sub(r'\s+', ' ', text)
text = re.sub(r'\n+', '\n', text)
text = re.sub(r'\d{2}:\d{2}', '', text)
text = re.sub(r'@\w+', '', text)
text = re.sub(r'http\S+', '', text)
text = re.sub(r'[^\w\s\u0600-\u06FF]', ' ', text)
return text.strip()
def chunk_text_smart(text, max_length=300):
try:
sentences = sent_tokenize(text)
except:
sentences = re.split(r'[.!?؟]+', text)
chunks = []
current = ""
for sentence in sentences:
if len(current + sentence) < max_length:
current += sentence + " "
else:
if current:
chunks.append(current.strip())
current = sentence + " "
if current:
chunks.append(current.strip())
return chunks
def summarize_messages(messages_data):
global model, tokenizer
if not model or not tokenizer:
return "❌ مدل خلاصهسازی در دسترس نیست"
if not messages_data:
return "❌ پیامی برای خلاصهسازی یافت نشد"
try:
text = ""
for msg in messages_data:
username = msg['username'] or "کاربر"
text += f"{username}: {msg['text']}\n"
text = preprocess_persian_text(text)
if len(text) < 100:
return "❌ متن برای خلاصهسازی بسیار کوتاه است"
chunks = chunk_text_smart(text, max_length=400)
summaries = []
for chunk in chunks[:2]:
inputs = tokenizer.encode(f"خلاصه: {chunk}", return_tensors="pt", max_length=512, truncation=True)
output = model.generate(
inputs,
max_length=100,
min_length=30,
length_penalty=1.2,
num_beams=3,
early_stopping=True,
no_repeat_ngram_size=3
)
summary = tokenizer.decode(output[0], skip_special_tokens=True)
summaries.append(summary.replace("خلاصه:", "").strip())
if not summaries:
return "❌ خطا در خلاصهسازی"
stats = f"\n\n📊 آمار: {len(messages_data)} پیام، {len(text)} کاراکتر"
return f"📝 خلاصه گفتگو:\n\n" + "\n\n".join(summaries) + stats
except Exception as e:
logger.error(f"Summarization error: {e}")
return "❌ خطا در خلاصهسازی"
def parse_summary_request(text):
text = text.lower()
count = 50
hours = None
match = re.search(r'(\d+)\s*(پیام|تا|عدد)', text)
if match:
count = min(int(match.group(1)), 200)
match = re.search(r'(\d+)\s*(ساعت|روز)', text)
if match:
hours = int(match.group(1))
if "روز" in match.group(2):
hours *= 24
hours = min(hours, 72)
return count, hours
async def start(update: Update, context: ContextTypes.DEFAULT_TYPE):
await update.message.reply_text("🤖 سلام! برای خلاصهسازی، عبارت «خلاصه» به همراه تعداد پیام یا مدت زمان را بفرست.")
async def handle_message(update: Update, context: ContextTypes.DEFAULT_TYPE):
message = update.message
if not message or not message.text:
return
chat_id = message.chat_id
user_id = message.from_user.id
username = message.from_user.username
text = message.text.strip()
timestamp = message.date or datetime.utcnow()
message_store.add_message(chat_id, user_id, username, text, timestamp)
if "خلاصه" in text:
count, hours = parse_summary_request(text)
msgs = message_store.get_messages(chat_id, count, hours)
summary = summarize_messages(msgs)
await update.message.reply_text(summary)
if __name__ == "__main__":
load_persian_model()
TOKEN = os.getenv("BOT_TOKEN") # یا مستقیم وارد کن: 'your_token_here'
if not TOKEN:
raise ValueError("❌ توکن تلگرام تعریف نشده.")
app = ApplicationBuilder().token(TOKEN).build()
app.add_handler(CommandHandler("start", start))
app.add_handler(MessageHandler(filters.TEXT & ~filters.COMMAND, handle_message))
logger.info("Starting bot...")
app.run_polling()
|