File size: 27,509 Bytes
0da1b3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a813381
0da1b3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
#Import Libraries
import streamlit as st
import plotly.graph_objects as go
import pandas as pd
import plotly.express as px
from yahoo_fin import stock_info
from yahoo_fin.stock_info import *
import math
import numpy as np
from sklearn.preprocessing import MinMaxScaler 
import joblib
import yfinance as yf
import time
import requests
from bs4 import BeautifulSoup

#Heading
st.title('Stock Market Analysis and Prediction')
st.write("#")

#TCS Data Taken
tcsdaily = stock_info.get_data("TCS.NS", interval="1d")
tcsmonthly= stock_info.get_data("TCS.NS", interval="1mo")
tcsyearly = pd.read_csv('data/tcs-yearly.csv')

#Reliance Data Taken
reldaily = stock_info.get_data("RELIANCE.NS", interval="1d")
relmonthly= stock_info.get_data("RELIANCE.NS", interval="1mo")
relyearly = pd.read_csv('data/relianceind-yearly.csv')

#Infosys Data Taken
infdaily = stock_info.get_data("INFY.NS", interval="1d")
infmonthly= stock_info.get_data("INFY.NS", interval="1mo")
infyearly = pd.read_csv('data/infosys-yearly.csv')

#Select Box
comp = st.selectbox('Select a Company from the below options :', ('Tata Consultancy Services - TCS', 'Reliance Industries - RELIANCE', 'Infosys - INFY'))

if comp == 'Tata Consultancy Services - TCS':
    
    page = requests.get('https://groww.in/stocks/tata-consultancy-services-ltd')
    soup=BeautifulSoup(page.content,'html.parser')
    fund=soup.find_all('td',class_="ft785Value")

    #Fundamental Values
    pb = float(fund[4].text)
    pe = float(fund[2].text)
    de = float(fund[8].text)
    div = float(fund[5].text.replace('%',''))
    roe = float(fund[1].text.replace('%',''))
    indpe = float(fund[6].text)
    
    col1, col2, col3, col4 = st.columns(4)
    x = round(stock_info.get_live_price("TCS.NS"),2)
    y = round(tcsdaily['close'].iloc[-2],2)
    tcs = get_stats('TCS.NS')['Value']
    
    col1.metric(label="Market Price", value=x, delta = round(x-y,2))
    col2.metric(label="52 Week High", value=tcs[3])
    col3.metric(label="52 Week Low", value=tcs[4])
    col4.metric(label="Return on Equity", value=tcs[34])
    
    col1, col2, col3, col4 = st.columns(4)
    col1.metric(label='P/B Ratio', value=pb)
    col2.metric(label="P/E Ratio", value=pe)
    col3.metric(label='Industry P/E', value=indpe)
    col4.metric(label="Debt to Equity", value=de)

    col1, col2, col3, col4 = st.columns(4)
    col1.metric(label='Previous Close', value=y)
    col2.metric(label="Book Value Per Share", value=tcs[48])
    col3.metric(label='Earning Per Share', value=tcs[41])
    col4.metric(label="Dividend Yield", value=tcs[22])


if comp == 'Reliance Industries - RELIANCE':
    
    page = requests.get('https://groww.in/stocks/reliance-industries-ltd')
    soup=BeautifulSoup(page.content,'html.parser')
    fund=soup.find_all('td',class_="ft785Value")

    #Fundamental Values
    pb = float(fund[4].text)
    pe = float(fund[2].text)
    de = float(fund[8].text)
    div = float(fund[5].text.replace('%',''))
    roe = float(fund[1].text.replace('%',''))
    indpe = float(fund[6].text)
    
    col1, col2, col3, col4 = st.columns(4)
    x = round(stock_info.get_live_price("RELIANCE.NS"),2)
    y = round(reldaily['close'].iloc[-2],2)
    rel = get_stats('RELIANCE.NS')['Value']
    col1.metric(label="Market Price", value=x, delta = round(x-y,2))
    col2.metric(label="52 Week High", value=rel[3])
    col3.metric(label="52 Week Low", value=rel[4])
    col4.metric(label="Return on Equity", value='8.21%')
    
    col1, col2, col3, col4 = st.columns(4)
    col1.metric(label='P/B Ratio', value=pb)
    col2.metric(label="P/E Ratio", value=pe)
    col3.metric(label='Industry P/E', value=indpe)
    col4.metric(label="Debt to Equity", value=de)
    
    col1, col2, col3, col4 = st.columns(4)
    col1.metric(label='Previous Close', value=y)
    col2.metric(label="Book Value Per Share", value=float(fund[7].text))
    col3.metric(label='Earning Per Share', value=float(fund[3].text))
    col4.metric(label="Dividend Yield", value=div)

if comp == 'Infosys - INFY':
    
    page = requests.get('https://groww.in/stocks/infosys-ltd')
    soup=BeautifulSoup(page.content,'html.parser')
    fund=soup.find_all('td',class_="ft785Value")

    #Fundamental Values
    pb = float(fund[4].text)
    pe = float(fund[2].text)
    de = float(fund[8].text)
    div = float(fund[5].text.replace('%',''))
    roe = float(fund[1].text.replace('%',''))
    indpe = float(fund[6].text)
    
    col1, col2, col3, col4 = st.columns(4)
    x = round(stock_info.get_live_price("INFY.NS"),2)
    y = round(infdaily['close'].iloc[-2],2)
    inf = get_stats('INFY.NS')['Value']
    col1.metric(label="Market Price", value=x, delta = round(x-y,2))
    col2.metric(label="52 Week High", value=inf[3])
    col3.metric(label="52 Week Low", value=inf[4])
    col4.metric(label="Return on Equity", value=inf[34])
    
    col1, col2, col3, col4 = st.columns(4)
    col1.metric(label='P/B Ratio', value=pb)
    col2.metric(label="P/E Ratio", value=pe)
    col3.metric(label='Industry P/E', value=indpe)
    col4.metric(label="Debt to Equity", value=de)
    
    col1, col2, col3, col4 = st.columns(4)
    col1.metric(label='Previous Close', value=y)
    col2.metric(label="Book Value Per Share", value=inf[48])
    col3.metric(label='Earning Per Share', value=inf[41])
    col4.metric(label="Dividend Yield", value=inf[22])

#Tab for Hist Data
st.write("#")
st.subheader('Historic data : ')
option1, option2, option3 = st.tabs(["Daily", "Monthly", "Yearly"])

cl1, cl2, cl3, cl4 = st.columns(4)
with cl1:
    ag1 = st.checkbox('Close', value='True')
with cl2:
    ag2 = st.checkbox('Open', value='True')
with cl3:
    ag3 = st.checkbox('High', value='True')
with cl4:
    ag4 = st.checkbox('Low', value='True')
            
with option1:
    opt = st.radio("Select timelength :", ('All Time', '1 Week', '1 Month', '1 Year'))
    st.write('<style>div.row-widget.stRadio > div{flex-direction:row;}</style>', unsafe_allow_html=True)
    
    if comp == 'Tata Consultancy Services - TCS':
        if opt=='All Time' :
            fig = px.line(tcsdaily, y='close',markers=False, title='Tata Consultancy Services daily data of all time')  
        if opt=='1 Week' :
            fig = px.line(tcsdaily.tail(5), y='close',markers=False, title='Tata Consultancy Services daily data of 1 week')   
        if opt=='1 Month' :
            fig = px.line(tcsdaily.tail(20), y='close',markers=False, title='Tata Consultancy Services daily data of 1 month')     
        if opt=='1 Year' :
            fig = px.line(tcsdaily.tail(251), y='close',markers=False, title='Tata Consultancy Services daily data of 1 year') 
        st.plotly_chart(fig, use_container_width=True)
        
        fig = go.Figure()
        if(ag1):
            fig.add_trace(go.Scatter(x=tcsdaily.index,y=tcsdaily['close'], name='Closing'))
        if(ag2):
            fig.add_trace(go.Scatter(x=tcsdaily.index,y=tcsdaily['open'], name = 'Opening', line=dict(color='yellow')))
        if(ag3):
            fig.add_trace(go.Scatter(x=tcsdaily.index,y=tcsdaily['high'], name = 'High', line=dict(color='green')))
        if(ag4):
            fig.add_trace(go.Scatter(x=tcsdaily.index,y=tcsdaily['low'], name = 'Low', line=dict(color='red')))
        fig.update_layout(xaxis_title='Date', yaxis_title='Price', title='Comparing other relevant parameters along close')
        st.plotly_chart(fig, use_container_width=True, title='Comparing other relevant parameters')

    if comp == 'Infosys - INFY':
        if opt=='All Time' :
            fig = px.line(infdaily, y='close',markers=False, title='Infosys daily data of all time')  
        if opt=='1 Week' :
            fig = px.line(infdaily.tail(5), y='close',markers=False, title='Infosys daily data of 1 week')   
        if opt=='1 Month' :
            fig = px.line(infdaily.tail(20), y='close',markers=False, title='Infosys daily data of 1 month')     
        if opt=='1 Year' :
            fig = px.line(infdaily.tail(251), y='close',markers=False, title='Infosys daily data of 1 year') 
        st.plotly_chart(fig, use_container_width=True)

        fig = go.Figure()   
        if(ag1):
            fig.add_trace(go.Scatter(x=infdaily.index, y=infdaily['close'], name='Closing', line=dict(color='blue')))
        if(ag2):
            fig.add_trace(go.Scatter(x=infdaily.index,y=infdaily['open'], name = 'Opening', line=dict(color='yellow')))
        if(ag3):
            fig.add_trace(go.Scatter(x=infdaily.index,y=infdaily['high'], name = 'High', line=dict(color='green')))
        if(ag4):
            fig.add_trace(go.Scatter(x=infdaily.index,y=infdaily['low'], name = 'Low', line=dict(color='red')))
        fig.update_layout(xaxis_title='Date', yaxis_title='Price', title='Comparing other relevant parameters')
        st.plotly_chart(fig, use_container_width=True)

    if comp == 'Reliance Industries - RELIANCE':
        if opt=='All Time' :
            fig = px.line(reldaily, y='close',markers=False, title='Reliance Industries daily data of all time')  
        if opt=='1 Week' :
            fig = px.line(reldaily.tail(5), y='close',markers=False, title='Reliance Industries daily data of 1 week')   
        if opt=='1 Month' :
            fig = px.line(reldaily.tail(20), y='close',markers=False, title='Reliance Industries daily data of 1 month')     
        if opt=='1 Year' :
            fig = px.line(reldaily.tail(251), y='close',markers=False, title='Reliance Industries daily data of 1 year') 
        st.plotly_chart(fig, use_container_width=True)

        fig = go.Figure()
        if(ag1):
            fig.add_trace(go.Scatter(x=reldaily.index, y=reldaily['close'], name='Closing', line=dict(color='blue')))
        if(ag2):
            fig.add_trace(go.Scatter(x=reldaily.index,y=reldaily['open'], name = 'Opening', line=dict(color='yellow')))
        if(ag3):
            fig.add_trace(go.Scatter(x=reldaily.index,y=reldaily['high'], name = 'High', line=dict(color='green')))
        if(ag4):
            fig.add_trace(go.Scatter(x=reldaily.index,y=reldaily['low'], name = 'Low', line=dict(color='red')))
        fig.update_layout(xaxis_title='Date', yaxis_title='Price', title='Comparing other relevant parameters along close')
        st.plotly_chart(fig, use_container_width=True)

with option2:
    if comp == 'Tata Consultancy Services - TCS':
        fig = px.line(tcsmonthly,y='close', markers=False, title='Tata Consultancy Services monthly data')
        st.plotly_chart(fig, use_container_width=True)

        fig = go.Figure()
        if(ag1):
            fig.add_trace(go.Scatter(x=tcsmonthly.index,y=tcsmonthly['close'], name='Closing', line=dict(color='blue')))
        if(ag2):
            fig.add_trace(go.Scatter(x=tcsmonthly.index,y=tcsmonthly['open'], name = 'Opening', line=dict(color='yellow')))
        if(ag3):
            fig.add_trace(go.Scatter(x=tcsmonthly.index,y=tcsmonthly['high'], name = 'High', line=dict(color='green')))
        if(ag4):
            fig.add_trace(go.Scatter(x=tcsmonthly.index,y=tcsmonthly['low'], name = 'Low', line=dict(color='red')))
        fig.update_layout(xaxis_title='Month', yaxis_title='Price', title='Comparing other relevant parameters')
        st.plotly_chart(fig, use_container_width=True)

    if comp == 'Infosys - INFY':
        fig = px.line(infmonthly, y='close',markers=False, title='Infosys monthly data')
        st.plotly_chart(fig, use_container_width=True)

        fig = go.Figure()
        if(ag1):
            fig.add_trace(go.Scatter(x=infmonthly.index, y=infmonthly['close'], name='Closing', line=dict(color='blue')))
        if(ag2):
            fig.add_trace(go.Scatter(x=infmonthly.index,y=infmonthly['open'], name = 'Opening', line=dict(color='yellow')))
        if(ag3):
            fig.add_trace(go.Scatter(x=infmonthly.index,y=infmonthly['high'], name = 'High', line=dict(color='green')))
        if(ag4):
            fig.add_trace(go.Scatter(y=infmonthly['low'], name = 'Low', line=dict(color='red')))
        fig.update_layout(xaxis_title='Month', yaxis_title='Price', title='Comparing other relevant parameters')
        st.plotly_chart(fig, use_container_width=True)

    if comp == 'Reliance Industries - RELIANCE':
        fig = px.line(relmonthly, y='close',markers=False, title='Reliance Industries monthly data')
        st.plotly_chart(fig, use_container_width=True)

        fig = go.Figure()
        if(ag1):
            fig.add_trace(go.Scatter(x=relmonthly.index,y=relmonthly['close'], name='Closing', line=dict(color='blue')))
        if(ag2):
            fig.add_trace(go.Scatter(x=relmonthly.index,y=relmonthly['open'], name = 'Opening', line=dict(color='yellow')))
        if(ag3):
            fig.add_trace(go.Scatter(x=relmonthly.index,y=relmonthly['high'], name = 'High', line=dict(color='green')))
        if(ag4):
            fig.add_trace(go.Scatter(x=relmonthly.index,y=relmonthly['low'], name = 'Low', line=dict(color='red')))
        fig.update_layout(xaxis_title='Month', yaxis_title='Price', title='Comparing other relevant parameters')
        st.plotly_chart(fig, use_container_width=True)

with option3:
    if comp == 'Tata Consultancy Services - TCS':
        fig = px.line(tcsyearly, x='Year', y='Close Price',markers=True, title='Tata Consultancy Services Yearly Data from 2004')
        st.plotly_chart(fig, use_container_width=True)
        
        fig = go.Figure()
        if(ag1):
            fig.add_trace(go.Scatter(x=tcsyearly['Year'], y=tcsyearly['Close Price'], name='Closing', line=dict(color='blue')))
        if(ag2):
            fig.add_trace(go.Scatter(x=tcsyearly['Year'], y=tcsyearly['Open Price'], name = 'Opening', line=dict(color='yellow')))
        if(ag3):
            fig.add_trace(go.Scatter(x=tcsyearly['Year'], y=tcsyearly['High Price'], name = 'High', line=dict(color='green')))
        if(ag4):
            fig.add_trace(go.Scatter(x=tcsyearly['Year'], y=tcsyearly['Low Price'], name = 'Low', line=dict(color='red')))
        fig.update_layout(xaxis_title='Year', yaxis_title='Price', title='Comparing other relevant parameters along close price')
        st.plotly_chart(fig, use_container_width=True, title='Comparing other relevant parameters')

    if comp == 'Infosys - INFY':
        fig = px.line(infyearly, x='Year', y='Close Price',markers=True, title='Infosys Yearly Data from 2004')
        st.plotly_chart(fig, use_container_width=True)

        fig = go.Figure()
        if(ag1):
            fig.add_trace(go.Scatter(x=infyearly['Year'], y=infyearly['Close Price'], name='Closing', line=dict(color='blue')))
        if(ag2):
            fig.add_trace(go.Scatter(x=infyearly['Year'], y=infyearly['Open Price'], name = 'Opening', line=dict(color='yellow')))
        if(ag3):
            fig.add_trace(go.Scatter(x=infyearly['Year'], y=infyearly['High Price'], name = 'High', line=dict(color='green')))
        if(ag4):
            fig.add_trace(go.Scatter(x=infyearly['Year'], y=infyearly['Low Price'], name = 'Low', line=dict(color='red')))
        fig.update_layout(xaxis_title='Year', yaxis_title='Price', title='Comparing other relevant parameters')
        st.plotly_chart(fig, use_container_width=True)

    if comp == 'Reliance Industries - RELIANCE':
        fig = px.line(relyearly, x='Year', y='Close Price',markers=True, title='Reliance Industries Yearly Data from 2004')
        st.plotly_chart(fig, use_container_width=True)

        fig = go.Figure()
        if(ag1):
            fig.add_trace(go.Scatter(x=relyearly['Year'], y=relyearly['Close Price'], name='Closing', line=dict(color='blue')))
        if(ag2):
            fig.add_trace(go.Scatter(x=relyearly['Year'], y=relyearly['Open Price'], name = 'Opening', line=dict(color='yellow')))
        if(ag3):
            fig.add_trace(go.Scatter(x=relyearly['Year'], y=relyearly['High Price'], name = 'High', line=dict(color='green')))
        if(ag4):
            fig.add_trace(go.Scatter(x=relyearly['Year'], y=relyearly['Low Price'], name = 'Low', line=dict(color='red')))
        fig.update_layout(xaxis_title='Year', yaxis_title='Price', title='Comparing other relevant parameters')
        st.plotly_chart(fig, use_container_width=True)

st.write("#")
#Riskometer
# Create object page
def get_info(url, x):
    score = 0
    page = requests.get(url)
    soup=BeautifulSoup(page.content,'html.parser')
    fund=soup.find_all('td',class_="ft785Value")

    #Fundamental Values
    pb = float(fund[4].text)
    pe = float(fund[2].text)
    de = float(fund[8].text)
    div = float(fund[5].text.replace('%',''))
    roe = float(fund[1].text.replace('%',''))
    indpe = float(fund[6].text)
    pat = soup.find_all('div',class_="shp76TextRight")
    promo = float(pat[0].text.replace('%',''))
    df = get_stats(x)
    l_52 = float(df['Value'][4])
    h_52 = float(df['Value'][3])
    live = round(stock_info.get_live_price(x),2)

    #1 - 52Week
    if abs(live-h_52) <= abs(live-l_52):
        score = score + 1

    #2 - Rev
    if x == 'TCS.NS':
        score = score +1

    #3 - PB
    if pb<3:
        score = score+1
    elif pb>3:
        score = score - 1

    #4 - SHP
    if promo>50:
        score = score+1
    elif promo<50:
        score = score-1

    #5 - Last 5 Year all 3 stocks made profit
    score = score + 1

    #6 - PE
    if pe < 30:
        score = score+1
    elif pe > 100:
        score = score - 1

    #7 - DE
    if de < 1:
        score = score+1
    elif de > 2:
        score = score - 1

    #8 - DivY
    if div > 2:
        score = score + 1

    elif div == 'NULL' or div == 'NA':
        score = score - 1

    #9 - ROE
    if roe > 25:
        score = score + 1
    elif roe < 5:
        score = score - 1

    #10 - Ind
    if pe>indpe:
        score = score-1
    elif abs(pe-indpe)<(indpe*0.1):
        score = score+1
  
    return score

#Access URL object
if comp == 'Tata Consultancy Services - TCS':
    ans = get_info('https://groww.in/stocks/tata-consultancy-services-ltd', 'TCS.NS')
if comp == 'Infosys - INFY':
    ans = get_info('https://groww.in/stocks/infosys-ltd', 'INFY.NS')
if comp == 'Reliance Industries - RELIANCE':
    ans = get_info('https://groww.in/stocks/reliance-industries-ltd', 'RELIANCE.NS')
   
score = 10 - ans

st.subheader('Riskometer')
if score >=9 :
    progress_text = "Very High Risk"
    my_bar = st.progress(0, text=progress_text)

    score = 10 if score>10 else score
    for percent_complete in range(score*10):
        time.sleep(0.02)
        my_bar.progress(percent_complete + 1, text=progress_text)
    st.write(score*10,'%')
    
elif score <=1 :
    progress_text = "Very Low Risk"
    my_bar = st.progress(0, text=progress_text)

    for percent_complete in range(score*10):
        time.sleep(0.02)
        my_bar.progress(percent_complete + 1, text=progress_text)

    st.write(score*10,'%')
    
elif score <=3 and score>=2:
    progress_text = "Low Risk"
    my_bar = st.progress(40, text=progress_text)

    for percent_complete in range(score*10):
        time.sleep(0.02)
        my_bar.progress(percent_complete + 1, text=progress_text)
    
    st.write(score*10,'%')  
        
elif score <=6 and score >=4 :
    progress_text = "Moderate Risk"
    my_bar = st.progress(60, text=progress_text)

    for percent_complete in range(score*10):
        time.sleep(0.02)
        my_bar.progress(percent_complete + 1, text=progress_text)
    st.write(score*10,'%')
    
elif score <=8 and score >=7 :
    progress_text = "High Risk"
    my_bar = st.progress(80, text=progress_text)

    for percent_complete in range(score*10):
        time.sleep(0.02)
        my_bar.progress(percent_complete + 1, text=progress_text)
    st.write(score*10,'%')

st.caption('Based on 10 fundamental aspects of an equity.')
        
#Predictions
st.write("#")
st.subheader('Predict : ')

if st.button('Click Here'):
    if comp == 'Tata Consultancy Services - TCS':
        x = round(stock_info.get_live_price("TCS.NS"),2)
        tcsweekly = stock_info.get_data("TCS.NS", interval="1d")
        tcsweekly=tcsweekly.dropna()
        values = tcsweekly['close'].values
        data_len = math.ceil(len(values)*0.8) 
        scaler = MinMaxScaler(feature_range=(0,1))
        scaled_data = scaler.fit_transform(values.reshape(-1,1))
        test_data = scaled_data[data_len-60: , : ]
        x_test = []
        for i in range(60, len(test_data)):
            x_test.append(test_data[i-60:i, 0])
        x_test = np.array(x_test)
        x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1))
        new = joblib.load('New/tcsmodelnew.pkl')
        ans = new.predict(x_test)
        ans1 = scaler.inverse_transform(ans)
        val = np.around(ans1[-1][0], decimals=2)
        st.metric(label="Prediction", value=val, delta = round(val-x,2)) 
        
    if comp == 'Reliance Industries - RELIANCE':
        x = round(stock_info.get_live_price("RELIANCE.NS"),2)
        relweekly = stock_info.get_data("RELIANCE.NS", interval="1d")
        relweekly=relweekly.dropna()
        values = relweekly['close'].values
        data_len = math.ceil(len(values)*0.8) 
        scaler = MinMaxScaler(feature_range=(0,1))
        scaled_data = scaler.fit_transform(values.reshape(-1,1))
        test_data = scaled_data[data_len-60: , : ]
        x_test = []
        for i in range(60, len(test_data)):
            x_test.append(test_data[i-60:i, 0])
        x_test = np.array(x_test)
        x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1))
        new = joblib.load('New/relmodelnew.pkl')
        ans = new.predict(x_test)
        ans1 = scaler.inverse_transform(ans)
        val = np.around(ans1[-1][0], decimals=2)
        st.metric(label="Prediction", value=val, delta = round(val-x,2)) 
        
    if comp == 'Infosys - INFY':
        x = round(stock_info.get_live_price("INFY.NS"),2)
        infweekly = stock_info.get_data("INFY.NS", interval="1d")
        infweekly=infweekly.dropna()
        values = infweekly['close'].values
        data_len = math.ceil(len(values)*0.8) 
        scaler = MinMaxScaler(feature_range=(0,1))
        scaled_data = scaler.fit_transform(values.reshape(-1,1))
        test_data = scaled_data[data_len-60: , : ]
        x_test = []
        for i in range(60, len(test_data)):
            x_test.append(test_data[i-60:i, 0])
        x_test = np.array(x_test)
        x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1))
        new = joblib.load('New/infymodelnew.pkl')
        ans = new.predict(x_test)
        ans1 = scaler.inverse_transform(ans)
        val = np.around(ans1[-1][0], decimals=2)
        st.metric(label="Prediction", value=val, delta = round(val-x,2))
        

#Support & Resistance
st.write("#")
st.subheader('Support and Resistance Indicators : ')

def supp_resis(x):
    tcsdaily = stock_info.get_data(x, interval="1d")
    new = tcsdaily.tail(15).head(1)

    high = new['high']
    low = new['low']
    close = new['close']
    pp = (high + low + close)/3
    r1 = 2*pp - low
    s1 = 2*pp - high
    r2 = pp + (r1-s1)
    s2 = pp - (r1-s1)
    r3 = high + 2*(pp-low)
    s3 = low - 2*(high - pp)

    fig = px.line(tcsdaily.tail(20), y='close',markers=False, title=x+' daily data of 1 month')     
    fig.add_hline(y=r1[0], line_dash="dash", line_color="orange",  annotation_text="1st Resistance")
    fig.add_hline(y=s1[0], line_dash="dash", line_color="lime", annotation_text="1st Support")

    fig.add_hline(y=r2[0], line_dash="dash", line_color="red",  annotation_text="2nd Resistance")
    fig.add_hline(y=s2[0], line_dash="dash", line_color="green", annotation_text="2nd Support")

    fig.add_hline(y=r3[0], line_dash="dash", line_color="darkred",  annotation_text="3rd Resistance")
    fig.add_hline(y=s3[0], line_dash="dash", line_color="darkgreen", annotation_text="3rd Support")

    st.plotly_chart(fig, use_container_width=True)

    data = yf.download(
            tickers = x,
            period = "5d",
            interval = "60m",
            group_by = 'ticker',
            auto_adjust = True,
            prepost = False,
            threads = True,
            proxy = None)

    fig = px.line(data, y='Close',markers=False, title=x+' hourly data of 5 days')     
    fig.add_hline(y=r1[0], line_dash="dash", line_color="orange",  annotation_text="1st Resistance")
    fig.add_hline(y=s1[0], line_dash="dash", line_color="lime", annotation_text="1st Support")

    fig.add_hline(y=r2[0], line_dash="dash", line_color="red",  annotation_text="2nd Resistance")
    fig.add_hline(y=s2[0], line_dash="dash", line_color="green", annotation_text="2nd Support")

    fig.add_hline(y=r3[0], line_dash="dash", line_color="darkred",  annotation_text="3rd Resistance")
    fig.add_hline(y=s3[0], line_dash="dash", line_color="darkgreen", annotation_text="3rd Support")

    st.plotly_chart(fig, use_container_width=True)

if comp == 'Tata Consultancy Services - TCS':
    supp_resis('TCS.NS')
if comp == 'Infosys - INFY':
    supp_resis('INFY.NS')
if comp == 'Reliance Industries - RELIANCE':
    supp_resis('RELIANCE.NS')

#Tab for Hist Data
st.write("#")
st.subheader('Financial data : ')
a1, a2, a3 = st.tabs(["Revenue & Profit", "Net Worth", "Shareholding Pattern"])

tier=['Promoters', 'Mutual Funds', 'Retail', 'Foreign Institutions','Others'] 
y=['2018', '2019', '2020', '2021', '2022']

with a1:
    st.caption('All values in Crs')
    if comp == 'Infosys - INFY':
        chart_data = pd.DataFrame([[70522,16029], [82675,15404], [90791,16594], [100472,19351], [121641,22110]],
        index=y, columns=["Revenue", "Profit"])
        st.bar_chart(chart_data, height=350)

    if comp == 'Tata Consultancy Services - TCS':
        chart_data = pd.DataFrame([[123104,25826], [146463,31472], [156949,32430], [164177,32430], [191754,38327]],
        index=y, columns=["Revenue", "Profit"])
        st.bar_chart(chart_data, height=350)

    if comp == 'Reliance Industries - RELIANCE':
        chart_data = pd.DataFrame([[408265,36075], [583094,39588], [611645,39354], [486326,49128], [721634,60705]],
        index=y, columns=["Revenue", "Profit"])
        st.bar_chart(chart_data, height=350)

    
with a2:
    st.caption('All values in Crs')
    if comp == 'Infosys - INFY':
        chart_data = pd.DataFrame([64923, 64948, 65450, 76351, 75350], index=y, columns=['Net Worth'])
        st.bar_chart(chart_data, height=350)
         
    if comp == 'Tata Consultancy Services - TCS':
        chart_data = pd.DataFrame([85128, 89446, 84126, 86433, 89139], index=y, columns=['Net Worth'])
        st.bar_chart(chart_data, height=350)

    if comp == 'Reliance Industries - RELIANCE':
        chart_data = pd.DataFrame([293506, 387112, 453331, 700172, 779485], index=y, columns=['Net Worth'])
        st.bar_chart(chart_data, height=350)

with a3:
    st.caption('As of March, 2023')
    if comp == 'Infosys - INFY':
        x = [15.11, 17.71, 18.22, 36.28, 12.68]
        fig = px.pie(values=x, names=tier)
        st.plotly_chart(fig, use_container_width=True, height=350)

    if comp == 'Tata Consultancy Services - TCS':
        x = [72.30, 3.31, 5.96, 12.94, 5.49]
        fig = px.pie(values=x, names=tier)
        st.plotly_chart(fig, use_container_width=True, height=350)

    if comp == 'Reliance Industries - RELIANCE':
        x = [50.49, 5.81, 11.64, 23.43, 8.63]
        fig = px.pie(values=x, names=tier)
        st.plotly_chart(fig, use_container_width=True, height=350)

st.write('Thanks ! We hope our webpage was useful.')
st.caption('The Web Application was made by Anand Soni and Deepak Rathore.')