Spaces:
Running
on
T4
Running
on
T4
File size: 13,112 Bytes
bd6726a 9724c61 bd6726a 9724c61 bd6726a 9724c61 bd6726a 9724c61 bd6726a 0eb155c fc4ad97 bd6726a 9724c61 fc4ad97 bd6726a fc4ad97 bd6726a fc4ad97 bd6726a 9724c61 d1be458 7f6d4e3 9724c61 bd6726a 9724c61 bd6726a 9724c61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
from ultralytics import YOLO
import numpy as np
import matplotlib.pyplot as plt
import gradio as gr
import cv2
import torch
from PIL import Image
# Load the pre-trained model
model = YOLO('checkpoints/FastSAM.pt')
# Description
title = "<center><strong><font size='8'>🏃 Fast Segment Anything 🤗</font></strong></center>"
description = """This is a demo on Github project 🏃 [Fast Segment Anything Model](https://github.com/CASIA-IVA-Lab/FastSAM).
🎯 Upload an Image, segment it with Fast Segment Anything (Everything mode). The other modes will come soon.
⌛️ It takes about 4~ seconds to generate segment results. The concurrency_count of queue is 1, please wait for a moment when it is crowded.
🚀 To get faster results, you can use a smaller input size and leave high_visual_quality unchecked.
📣 You can also obtain the segmentation results of any Image through this Colab: [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1oX14f6IneGGw612WgVlAiy91UHwFAvr9?usp=sharing)
😚 A huge thanks goes out to the @HuggingFace Team for supporting us with GPU grant.
🏠 Check out our [Model Card 🏃](https://huggingface.co/An-619/FastSAM)
"""
examples = [["assets/sa_8776.jpg"], ["assets/sa_414.jpg"],
["assets/sa_1309.jpg"], ["assets/sa_11025.jpg"],
["assets/sa_561.jpg"], ["assets/sa_192.jpg"],
["assets/sa_10039.jpg"], ["assets/sa_862.jpg"]]
default_example = examples[0]
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"
def fast_process(annotations, image, high_quality, device, scale):
if isinstance(annotations[0],dict):
annotations = [annotation['segmentation'] for annotation in annotations]
original_h = image.height
original_w = image.width
if high_quality == True:
if isinstance(annotations[0],torch.Tensor):
annotations = np.array(annotations.cpu())
for i, mask in enumerate(annotations):
mask = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8))
annotations[i] = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8))
if device == 'cpu':
annotations = np.array(annotations)
inner_mask = fast_show_mask(annotations,
plt.gca(),
bbox=None,
points=None,
pointlabel=None,
retinamask=True,
target_height=original_h,
target_width=original_w)
else:
if isinstance(annotations[0],np.ndarray):
annotations = torch.from_numpy(annotations)
inner_mask = fast_show_mask_gpu(annotations,
plt.gca(),
bbox=None,
points=None,
pointlabel=None)
if isinstance(annotations, torch.Tensor):
annotations = annotations.cpu().numpy()
if high_quality:
contour_all = []
temp = np.zeros((original_h, original_w,1))
for i, mask in enumerate(annotations):
if type(mask) == dict:
mask = mask['segmentation']
annotation = mask.astype(np.uint8)
contours, _ = cv2.findContours(annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
for contour in contours:
contour_all.append(contour)
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2 // scale)
color = np.array([0 / 255, 0 / 255, 255 / 255, 0.9])
contour_mask = temp / 255 * color.reshape(1, 1, -1)
image = image.convert('RGBA')
overlay_inner = Image.fromarray((inner_mask * 255).astype(np.uint8), 'RGBA')
image.paste(overlay_inner, (0, 0), overlay_inner)
if high_quality:
overlay_contour = Image.fromarray((contour_mask * 255).astype(np.uint8), 'RGBA')
image.paste(overlay_contour, (0, 0), overlay_contour)
return image
# CPU post process
def fast_show_mask(annotation, ax, bbox=None,
points=None, pointlabel=None,
retinamask=True, target_height=960,
target_width=960):
msak_sum = annotation.shape[0]
height = annotation.shape[1]
weight = annotation.shape[2]
# 将annotation 按照面积 排序
areas = np.sum(annotation, axis=(1, 2))
sorted_indices = np.argsort(areas)[::1]
annotation = annotation[sorted_indices]
index = (annotation != 0).argmax(axis=0)
color = np.random.random((msak_sum,1,1,3))
transparency = np.ones((msak_sum,1,1,1)) * 0.6
visual = np.concatenate([color,transparency],axis=-1)
mask_image = np.expand_dims(annotation,-1) * visual
mask = np.zeros((height,weight,4))
h_indices, w_indices = np.meshgrid(np.arange(height), np.arange(weight), indexing='ij')
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
# 使用向量化索引更新show的值
mask[h_indices, w_indices, :] = mask_image[indices]
if bbox is not None:
x1, y1, x2, y2 = bbox
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1))
# draw point
if points is not None:
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==1], [point[1] for i, point in enumerate(points) if pointlabel[i]==1], s=20, c='y')
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==0], [point[1] for i, point in enumerate(points) if pointlabel[i]==0], s=20, c='m')
if retinamask==False:
mask = cv2.resize(mask, (target_width, target_height), interpolation=cv2.INTER_NEAREST)
return mask
def fast_show_mask_gpu(annotation, ax,
bbox=None, points=None,
pointlabel=None):
msak_sum = annotation.shape[0]
height = annotation.shape[1]
weight = annotation.shape[2]
areas = torch.sum(annotation, dim=(1, 2))
sorted_indices = torch.argsort(areas, descending=False)
annotation = annotation[sorted_indices]
# 找每个位置第一个非零值下标
index = (annotation != 0).to(torch.long).argmax(dim=0)
color = torch.rand((msak_sum,1,1,3)).to(annotation.device)
transparency = torch.ones((msak_sum,1,1,1)).to(annotation.device) * 0.6
visual = torch.cat([color,transparency],dim=-1)
mask_image = torch.unsqueeze(annotation,-1) * visual
# 按index取数,index指每个位置选哪个batch的数,把mask_image转成一个batch的形式
mask = torch.zeros((height,weight,4)).to(annotation.device)
h_indices, w_indices = torch.meshgrid(torch.arange(height), torch.arange(weight))
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
# 使用向量化索引更新show的值
mask[h_indices, w_indices, :] = mask_image[indices]
mask_cpu = mask.cpu().numpy()
if bbox is not None:
x1, y1, x2, y2 = bbox
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1))
# draw point
if points is not None:
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==1], [point[1] for i, point in enumerate(points) if pointlabel[i]==1], s=20, c='y')
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==0], [point[1] for i, point in enumerate(points) if pointlabel[i]==0], s=20, c='m')
return mask_cpu
device = 'cuda' if torch.cuda.is_available() else 'cpu'
def segment_image(input, evt: gr.SelectData=None, input_size=1024, high_visual_quality=True, iou_threshold=0.7, conf_threshold=0.25):
point = (evt.index[0],evt.index[1])
input_size = int(input_size) # 确保 imgsz 是整数
# Thanks for the suggestion by hysts in HuggingFace.
w, h = input.size
scale = input_size / max(w, h)
new_w = int(w * scale)
new_h = int(h * scale)
input = input.resize((new_w, new_h))
results = model(input, device=device, retina_masks=True, iou=iou_threshold, conf=conf_threshold, imgsz=input_size)
fig = fast_process(annotations=results[0].masks.data,
image=input, high_quality=high_visual_quality,
device=device, scale=(1024 // input_size),
points=)
return fig
# input_size=1024
# high_quality_visual=True
# inp = 'assets/sa_192.jpg'
# input = Image.open(inp)
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
# input_size = int(input_size) # 确保 imgsz 是整数
# results = model(input, device=device, retina_masks=True, iou=0.7, conf=0.25, imgsz=input_size)
# pil_image = fast_process(annotations=results[0].masks.data,
# image=input, high_quality=high_quality_visual, device=device)
cond_img = gr.Image(label="Input", value=default_example[0], type='pil')
segm_img = gr.Image(label="Segmented Image", interactive=False, type='pil')
input_size_slider = gr.components.Slider(minimum=512, maximum=1024, value=1024, step=64, label='Input_size (Our model was trained on a size of 1024)')
with gr.Blocks(css=css, title='Fast Segment Anything') as demo:
with gr.Row():
# Title
gr.Markdown(title)
# # # Description
# # gr.Markdown(description)
# Images
with gr.Row(variant="panel"):
with gr.Column(scale=1):
cond_img.render()
with gr.Column(scale=1):
segm_img.render()
# Submit & Clear
with gr.Row():
with gr.Column():
input_size_slider.render()
with gr.Row():
vis_check = gr.Checkbox(value=True, label='high_visual_quality')
with gr.Column():
segment_btn = gr.Button("Segment Anything", variant='primary')
# with gr.Column():
# clear_btn = gr.Button("Clear", variant="primary")
gr.Markdown("Try some of the examples below ⬇️")
gr.Examples(examples=examples,
inputs=[cond_img],
outputs=segm_img,
fn=segment_image,
cache_examples=True,
examples_per_page=4)
# gr.Markdown("Try some of the examples below ⬇️")
# gr.Examples(examples=examples,
# inputs=[cond_img, input_size_slider, vis_check, iou_threshold, conf_threshold],
# outputs=output,
# fn=segment_image,
# examples_per_page=4)
with gr.Column():
with gr.Accordion("Advanced options", open=False):
iou_threshold = gr.Slider(0.1, 0.9, 0.7, step=0.1, label='iou_threshold')
conf_threshold = gr.Slider(0.1, 0.9, 0.25, step=0.05, label='conf_threshold')
# Description
gr.Markdown(description)
cond_img.select(segment_image, [], input_img)
segment_btn.click(segment_image,
inputs=[cond_img, input_size_slider, vis_check, iou_threshold, conf_threshold],
outputs=segm_img)
# def clear():
# return None, None
# clear_btn.click(fn=clear, inputs=None, outputs=None)
demo.queue()
demo.launch()
# app_interface = gr.Interface(fn=predict,
# inputs=[gr.Image(type='pil'),
# gr.components.Slider(minimum=512, maximum=1024, value=1024, step=64, label='input_size'),
# gr.components.Checkbox(value=True, label='high_visual_quality')],
# # outputs=['plot'],
# outputs=gr.Image(type='pil'),
# # examples=[["assets/sa_8776.jpg"]],
# # # ["assets/sa_1309.jpg", 1024]],
# examples=[["assets/sa_192.jpg"], ["assets/sa_414.jpg"],
# ["assets/sa_561.jpg"], ["assets/sa_862.jpg"],
# ["assets/sa_1309.jpg"], ["assets/sa_8776.jpg"],
# ["assets/sa_10039.jpg"], ["assets/sa_11025.jpg"],],
# cache_examples=True,
# title="Fast Segment Anything (Everything mode)"
# )
# app_interface.queue(concurrency_count=1, max_size=20)
# app_interface.launch() |