Spaces:
Running
on
T4
Running
on
T4
File size: 11,544 Bytes
7342297 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
from ultralytics import YOLO
import gradio as gr
import torch
from tools import fast_process, format_results, box_prompt, point_prompt
from PIL import ImageDraw
import numpy as np
# Load the pre-trained model
model = YOLO('checkpoints/FastSAM.pt')
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Description
title = "<center><strong><font size='8'>🏃 Fast Segment Anything 🤗</font></strong></center>"
news = """ # 📖 News
🔥 2023/06/24: Add the 'Advanced options" in Everything mode to get a more detailed adjustment.
🔥 2023/06/26: Support the points mode. (Better and faster interaction will come soon!)
"""
description_e = """This is a demo on Github project 🏃 [Fast Segment Anything Model](https://github.com/CASIA-IVA-Lab/FastSAM). Welcome to give a star ⭐️ to it.
🎯 Upload an Image, segment it with Fast Segment Anything (Everything mode). The other modes will come soon.
⌛️ It takes about 6~ seconds to generate segment results. The concurrency_count of queue is 1, please wait for a moment when it is crowded.
🚀 To get faster results, you can use a smaller input size and leave high_visual_quality unchecked.
📣 You can also obtain the segmentation results of any Image through this Colab: [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1oX14f6IneGGw612WgVlAiy91UHwFAvr9?usp=sharing)
😚 A huge thanks goes out to the @HuggingFace Team for supporting us with GPU grant.
🏠 Check out our [Model Card 🏃](https://huggingface.co/An-619/FastSAM)
"""
description_p = """ # 🎯 Instructions for points mode
This is a demo on Github project 🏃 [Fast Segment Anything Model](https://github.com/CASIA-IVA-Lab/FastSAM). Welcome to give a star ⭐️ to it.
1. Upload an image or choose an example.
2. Choose the point label ('Add mask' means a positive point. 'Remove' Area means a negative point that is not segmented).
3. Add points one by one on the image.
4. Click the 'Segment with points prompt' button to get the segmentation results.
**5. If you get Error, click the 'Clear points' button and try again may help.**
"""
examples = [["assets/sa_8776.jpg"], ["assets/sa_414.jpg"], ["assets/sa_1309.jpg"], ["assets/sa_11025.jpg"],
["assets/sa_561.jpg"], ["assets/sa_192.jpg"], ["assets/sa_10039.jpg"], ["assets/sa_862.jpg"]]
default_example = examples[0]
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"
def segment_everything(
input,
input_size=1024,
iou_threshold=0.7,
conf_threshold=0.25,
better_quality=False,
withContours=True,
use_retina=True,
mask_random_color=True,
):
input_size = int(input_size) # 确保 imgsz 是整数
# Thanks for the suggestion by hysts in HuggingFace.
w, h = input.size
scale = input_size / max(w, h)
new_w = int(w * scale)
new_h = int(h * scale)
input = input.resize((new_w, new_h))
results = model(input,
device=device,
retina_masks=True,
iou=iou_threshold,
conf=conf_threshold,
imgsz=input_size,)
fig = fast_process(annotations=results[0].masks.data,
image=input,
device=device,
scale=(1024 // input_size),
better_quality=better_quality,
mask_random_color=mask_random_color,
bbox=None,
use_retina=use_retina,
withContours=withContours,)
return fig
def segment_with_points(
input,
input_size=1024,
iou_threshold=0.7,
conf_threshold=0.25,
better_quality=False,
withContours=True,
mask_random_color=True,
use_retina=True,
):
global global_points
global global_point_label
input_size = int(input_size) # 确保 imgsz 是整数
# Thanks for the suggestion by hysts in HuggingFace.
w, h = input.size
scale = input_size / max(w, h)
new_w = int(w * scale)
new_h = int(h * scale)
input = input.resize((new_w, new_h))
scaled_points = [[int(x * scale) for x in point] for point in global_points]
results = model(input,
device=device,
retina_masks=True,
iou=iou_threshold,
conf=conf_threshold,
imgsz=input_size,)
results = format_results(results[0], 0)
annotations, _ = point_prompt(results, scaled_points, global_point_label, new_h, new_w)
annotations = np.array([annotations])
fig = fast_process(annotations=annotations,
image=input,
device=device,
scale=(1024 // input_size),
better_quality=better_quality,
mask_random_color=mask_random_color,
bbox=None,
use_retina=use_retina,
withContours=withContours,)
global_points = []
global_point_label = []
return fig, None
def get_points_with_draw(image, label, evt: gr.SelectData):
x, y = evt.index[0], evt.index[1]
point_radius, point_color = 15, (255, 255, 0) if label == 'Add Mask' else (255, 0, 255)
global global_points
global global_point_label
print((x, y))
global_points.append([x, y])
global_point_label.append(1 if label == 'Add Mask' else 0)
# 创建一个可以在图像上绘图的对象
draw = ImageDraw.Draw(image)
draw.ellipse([(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)], fill=point_color)
return image
# input_size=1024
# high_quality_visual=True
# inp = 'assets/sa_192.jpg'
# input = Image.open(inp)
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
# input_size = int(input_size) # 确保 imgsz 是整数
# results = model(input, device=device, retina_masks=True, iou=0.7, conf=0.25, imgsz=input_size)
# pil_image = fast_process(annotations=results[0].masks.data,
# image=input, high_quality=high_quality_visual, device=device)
cond_img_e = gr.Image(label="Input", value=default_example[0], type='pil')
cond_img_p = gr.Image(label="Input with points", value=default_example[0], type='pil')
segm_img_e = gr.Image(label="Segmented Image", interactive=False, type='pil')
segm_img_p = gr.Image(label="Segmented Image with points", interactive=False, type='pil')
global_points = []
global_point_label = [] # TODO:Clear points each image
input_size_slider = gr.components.Slider(minimum=512,
maximum=1024,
value=1024,
step=64,
label='Input_size',
info='Our model was trained on a size of 1024')
with gr.Blocks(css=css, title='Fast Segment Anything') as demo:
with gr.Row():
with gr.Column(scale=1):
# Title
gr.Markdown(title)
with gr.Column(scale=1):
# News
gr.Markdown(news)
with gr.Tab("Everything mode"):
# Images
with gr.Row(variant="panel"):
with gr.Column(scale=1):
cond_img_e.render()
with gr.Column(scale=1):
segm_img_e.render()
# Submit & Clear
with gr.Row():
with gr.Column():
input_size_slider.render()
with gr.Row():
contour_check = gr.Checkbox(value=True, label='withContours', info='draw the edges of the masks')
with gr.Column():
segment_btn_e = gr.Button("Segment Everything", variant='primary')
clear_btn_e = gr.Button("Clear", variant="secondary")
gr.Markdown("Try some of the examples below ⬇️")
gr.Examples(examples=examples,
inputs=[cond_img_e],
outputs=segm_img_e,
fn=segment_everything,
cache_examples=True,
examples_per_page=4)
with gr.Column():
with gr.Accordion("Advanced options", open=False):
iou_threshold = gr.Slider(0.1, 0.9, 0.7, step=0.1, label='iou', info='iou threshold for filtering the annotations')
conf_threshold = gr.Slider(0.1, 0.9, 0.25, step=0.05, label='conf', info='object confidence threshold')
with gr.Row():
mor_check = gr.Checkbox(value=False, label='better_visual_quality', info='better quality using morphologyEx')
with gr.Column():
retina_check = gr.Checkbox(value=True, label='use_retina', info='draw high-resolution segmentation masks')
# Description
gr.Markdown(description_e)
with gr.Tab("Points mode"):
# Images
with gr.Row(variant="panel"):
with gr.Column(scale=1):
cond_img_p.render()
with gr.Column(scale=1):
segm_img_p.render()
# Submit & Clear
with gr.Row():
with gr.Column():
with gr.Row():
add_or_remove = gr.Radio(["Add Mask", "Remove Area"], value="Add Mask", label="Point_label (foreground/background)")
with gr.Column():
segment_btn_p = gr.Button("Segment with points prompt", variant='primary')
clear_btn_p = gr.Button("Clear points", variant='secondary')
gr.Markdown("Try some of the examples below ⬇️")
gr.Examples(examples=examples,
inputs=[cond_img_p],
outputs=segm_img_p,
fn=segment_with_points,
# cache_examples=True,
examples_per_page=4)
with gr.Column():
# Description
gr.Markdown(description_p)
cond_img_p.select(get_points_with_draw, [cond_img_p, add_or_remove], cond_img_p)
segment_btn_e.click(segment_everything,
inputs=[cond_img_e, input_size_slider, iou_threshold, conf_threshold, mor_check, contour_check, retina_check],
outputs=segm_img_e)
segment_btn_p.click(segment_with_points,
inputs=[cond_img_p],
outputs=[segm_img_p, cond_img_p])
def clear():
return None, None
clear_btn_e.click(clear, outputs=[cond_img_e, segm_img_e])
clear_btn_p.click(clear, outputs=[cond_img_p, segm_img_p])
demo.queue()
demo.launch()
|