File size: 6,657 Bytes
6d928a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
# Copyright (c) Facebook, Inc. and its affiliates.
# pyre-unsafe
import logging
import numpy as np
import cv2
import torch
Image = np.ndarray
Boxes = torch.Tensor
class MatrixVisualizer:
"""
Base visualizer for matrix data
"""
def __init__(
self,
inplace=True,
cmap=cv2.COLORMAP_PARULA,
val_scale=1.0,
alpha=0.7,
interp_method_matrix=cv2.INTER_LINEAR,
interp_method_mask=cv2.INTER_NEAREST,
):
self.inplace = inplace
self.cmap = cmap
self.val_scale = val_scale
self.alpha = alpha
self.interp_method_matrix = interp_method_matrix
self.interp_method_mask = interp_method_mask
def visualize(self, image_bgr, mask, matrix, bbox_xywh):
self._check_image(image_bgr)
self._check_mask_matrix(mask, matrix)
if self.inplace:
image_target_bgr = image_bgr
else:
image_target_bgr = image_bgr * 0
x, y, w, h = [int(v) for v in bbox_xywh]
if w <= 0 or h <= 0:
return image_bgr
mask, matrix = self._resize(mask, matrix, w, h)
mask_bg = np.tile((mask == 0)[:, :, np.newaxis], [1, 1, 3])
matrix_scaled = matrix.astype(np.float32) * self.val_scale
_EPSILON = 1e-6
if np.any(matrix_scaled > 255 + _EPSILON):
logger = logging.getLogger(__name__)
logger.warning(
f"Matrix has values > {255 + _EPSILON} after " f"scaling, clipping to [0..255]"
)
matrix_scaled_8u = matrix_scaled.clip(0, 255).astype(np.uint8)
matrix_vis = cv2.applyColorMap(matrix_scaled_8u, self.cmap)
matrix_vis[mask_bg] = image_target_bgr[y : y + h, x : x + w, :][mask_bg]
image_target_bgr[y : y + h, x : x + w, :] = (
image_target_bgr[y : y + h, x : x + w, :] * (1.0 - self.alpha) + matrix_vis * self.alpha
)
return image_target_bgr.astype(np.uint8)
def _resize(self, mask, matrix, w, h):
if (w != mask.shape[1]) or (h != mask.shape[0]):
mask = cv2.resize(mask, (w, h), self.interp_method_mask)
if (w != matrix.shape[1]) or (h != matrix.shape[0]):
matrix = cv2.resize(matrix, (w, h), self.interp_method_matrix)
return mask, matrix
def _check_image(self, image_rgb):
assert len(image_rgb.shape) == 3
assert image_rgb.shape[2] == 3
assert image_rgb.dtype == np.uint8
def _check_mask_matrix(self, mask, matrix):
assert len(matrix.shape) == 2
assert len(mask.shape) == 2
assert mask.dtype == np.uint8
class RectangleVisualizer:
_COLOR_GREEN = (18, 127, 15)
def __init__(self, color=_COLOR_GREEN, thickness=1):
self.color = color
self.thickness = thickness
def visualize(self, image_bgr, bbox_xywh, color=None, thickness=None):
x, y, w, h = bbox_xywh
color = color or self.color
thickness = thickness or self.thickness
cv2.rectangle(image_bgr, (int(x), int(y)), (int(x + w), int(y + h)), color, thickness)
return image_bgr
class PointsVisualizer:
_COLOR_GREEN = (18, 127, 15)
def __init__(self, color_bgr=_COLOR_GREEN, r=5):
self.color_bgr = color_bgr
self.r = r
def visualize(self, image_bgr, pts_xy, colors_bgr=None, rs=None):
for j, pt_xy in enumerate(pts_xy):
x, y = pt_xy
color_bgr = colors_bgr[j] if colors_bgr is not None else self.color_bgr
r = rs[j] if rs is not None else self.r
cv2.circle(image_bgr, (x, y), r, color_bgr, -1)
return image_bgr
class TextVisualizer:
_COLOR_GRAY = (218, 227, 218)
_COLOR_WHITE = (255, 255, 255)
def __init__(
self,
font_face=cv2.FONT_HERSHEY_SIMPLEX,
font_color_bgr=_COLOR_GRAY,
font_scale=0.35,
font_line_type=cv2.LINE_AA,
font_line_thickness=1,
fill_color_bgr=_COLOR_WHITE,
fill_color_transparency=1.0,
frame_color_bgr=_COLOR_WHITE,
frame_color_transparency=1.0,
frame_thickness=1,
):
self.font_face = font_face
self.font_color_bgr = font_color_bgr
self.font_scale = font_scale
self.font_line_type = font_line_type
self.font_line_thickness = font_line_thickness
self.fill_color_bgr = fill_color_bgr
self.fill_color_transparency = fill_color_transparency
self.frame_color_bgr = frame_color_bgr
self.frame_color_transparency = frame_color_transparency
self.frame_thickness = frame_thickness
def visualize(self, image_bgr, txt, topleft_xy):
txt_w, txt_h = self.get_text_size_wh(txt)
topleft_xy = tuple(map(int, topleft_xy))
x, y = topleft_xy
if self.frame_color_transparency < 1.0:
t = self.frame_thickness
image_bgr[y - t : y + txt_h + t, x - t : x + txt_w + t, :] = (
image_bgr[y - t : y + txt_h + t, x - t : x + txt_w + t, :]
* self.frame_color_transparency
+ np.array(self.frame_color_bgr) * (1.0 - self.frame_color_transparency)
).astype(float)
if self.fill_color_transparency < 1.0:
image_bgr[y : y + txt_h, x : x + txt_w, :] = (
image_bgr[y : y + txt_h, x : x + txt_w, :] * self.fill_color_transparency
+ np.array(self.fill_color_bgr) * (1.0 - self.fill_color_transparency)
).astype(float)
cv2.putText(
image_bgr,
txt,
topleft_xy,
self.font_face,
self.font_scale,
self.font_color_bgr,
self.font_line_thickness,
self.font_line_type,
)
return image_bgr
def get_text_size_wh(self, txt):
((txt_w, txt_h), _) = cv2.getTextSize(
txt, self.font_face, self.font_scale, self.font_line_thickness
)
return txt_w, txt_h
class CompoundVisualizer:
def __init__(self, visualizers):
self.visualizers = visualizers
def visualize(self, image_bgr, data):
assert len(data) == len(
self.visualizers
), "The number of datas {} should match the number of visualizers" " {}".format(
len(data), len(self.visualizers)
)
image = image_bgr
for i, visualizer in enumerate(self.visualizers):
image = visualizer.visualize(image, data[i])
return image
def __str__(self):
visualizer_str = ", ".join([str(v) for v in self.visualizers])
return "Compound Visualizer [{}]".format(visualizer_str)
|