File size: 14,598 Bytes
105b369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import json
from typing import Optional, List, Iterator, Dict, Any, Union, Callable

from phi.llm.base import LLM
from phi.llm.message import Message
from phi.tools.function import Function, FunctionCall
from phi.tools import Tool, Toolkit
from phi.utils.log import logger
from phi.utils.timer import Timer
from phi.utils.tools import get_function_call_for_tool_call

try:
    from vertexai.generative_models import (
        GenerativeModel,
        GenerationResponse,
        FunctionDeclaration,
        Tool as GeminiTool,
        Candidate as GenerationResponseCandidate,
        Content as GenerationResponseContent,
        Part as GenerationResponsePart,
    )
except ImportError:
    logger.error("`google-cloud-aiplatform` not installed")
    raise


class Gemini(LLM):
    name: str = "Gemini"
    model: str = "gemini-1.0-pro-vision"
    generation_config: Optional[Any] = None
    safety_settings: Optional[Any] = None
    function_declarations: Optional[List[FunctionDeclaration]] = None
    generative_model_kwargs: Optional[Dict[str, Any]] = None
    generative_model: Optional[GenerativeModel] = None

    def conform_function_to_gemini(self, params: Dict[str, Any]) -> Dict[str, Any]:
        fixed_parameters = {}
        for k, v in params.items():
            if k == "properties":
                fixed_properties = {}
                for prop_k, prop_v in v.items():
                    fixed_property_type = prop_v.get("type")
                    if isinstance(fixed_property_type, list):
                        if "null" in fixed_property_type:
                            fixed_property_type.remove("null")
                        fixed_properties[prop_k] = {"type": fixed_property_type[0]}
                    else:
                        fixed_properties[prop_k] = {"type": fixed_property_type}
                fixed_parameters[k] = fixed_properties
            else:
                fixed_parameters[k] = v
        return fixed_parameters

    def add_tool(self, tool: Union[Tool, Toolkit, Callable, Dict, Function]) -> None:
        if self.function_declarations is None:
            self.function_declarations = []

        # If the tool is a Tool or Dict, add it directly to the LLM
        if isinstance(tool, Tool) or isinstance(tool, Dict):
            logger.warning(f"Tool of type: {type(tool)} is not yet supported by Gemini.")
        # If the tool is a Callable or Toolkit, add its functions to the LLM
        elif callable(tool) or isinstance(tool, Toolkit) or isinstance(tool, Function):
            if self.functions is None:
                self.functions = {}

            if isinstance(tool, Toolkit):
                self.functions.update(tool.functions)
                for func in tool.functions.values():
                    fd = FunctionDeclaration(
                        name=func.name,
                        description=func.description,
                        parameters=self.conform_function_to_gemini(func.parameters),
                    )
                    self.function_declarations.append(fd)
                logger.debug(f"Functions from {tool.name} added to LLM.")
            elif isinstance(tool, Function):
                self.functions[tool.name] = tool
                fd = FunctionDeclaration(
                    name=tool.name,
                    description=tool.description,
                    parameters=self.conform_function_to_gemini(tool.parameters),
                )
                self.function_declarations.append(fd)
                logger.debug(f"Function {tool.name} added to LLM.")
            elif callable(tool):
                func = Function.from_callable(tool)
                self.functions[func.name] = func
                fd = FunctionDeclaration(
                    name=func.name,
                    description=func.description,
                    parameters=self.conform_function_to_gemini(func.parameters),
                )
                self.function_declarations.append(fd)
                logger.debug(f"Function {func.name} added to LLM.")

    @property
    def api_kwargs(self) -> Dict[str, Any]:
        kwargs: Dict[str, Any] = {}
        if self.generation_config:
            kwargs["generation_config"] = self.generation_config
        if self.safety_settings:
            kwargs["safety_settings"] = self.safety_settings
        if self.generative_model_kwargs:
            kwargs.update(self.generative_model_kwargs)
        if self.function_declarations:
            kwargs["tools"] = [GeminiTool(function_declarations=self.function_declarations)]
        return kwargs

    @property
    def client(self) -> GenerativeModel:
        if self.generative_model is None:
            self.generative_model = GenerativeModel(model_name=self.model, **self.api_kwargs)
        return self.generative_model

    def to_dict(self) -> Dict[str, Any]:
        _dict = super().to_dict()
        if self.generation_config:
            _dict["generation_config"] = self.generation_config
        if self.safety_settings:
            _dict["safety_settings"] = self.safety_settings
        return _dict

    def convert_messages_to_contents(self, messages: List[Message]) -> List[Any]:
        _contents: List[Any] = []
        for m in messages:
            if isinstance(m.content, str):
                _contents.append(m.content)
            elif isinstance(m.content, list):
                _contents.extend(m.content)
        return _contents

    def invoke(self, messages: List[Message]) -> GenerationResponse:
        return self.client.generate_content(contents=self.convert_messages_to_contents(messages))

    def invoke_stream(self, messages: List[Message]) -> Iterator[GenerationResponse]:
        yield from self.client.generate_content(
            contents=self.convert_messages_to_contents(messages),
            stream=True,
        )

    def response(self, messages: List[Message]) -> str:
        logger.debug("---------- VertexAI Response Start ----------")
        # -*- Log messages for debugging
        for m in messages:
            m.log()

        response_timer = Timer()
        response_timer.start()
        response: GenerationResponse = self.invoke(messages=messages)
        response_timer.stop()
        logger.debug(f"Time to generate response: {response_timer.elapsed:.4f}s")
        # logger.debug(f"VertexAI response type: {type(response)}")
        # logger.debug(f"VertexAI response: {response}")

        # -*- Parse response
        response_candidates: List[GenerationResponseCandidate] = response.candidates
        response_content: GenerationResponseContent = response_candidates[0].content
        response_role = response_content.role
        response_parts: List[GenerationResponsePart] = response_content.parts
        response_text: Optional[str] = None
        response_function_calls: Optional[List[Dict[str, Any]]] = None

        if len(response_parts) > 1:
            logger.warning("Multiple content parts are not yet supported.")
            return "More than one response part found."

        _part_dict = response_parts[0].to_dict()
        if "text" in _part_dict:
            response_text = _part_dict.get("text")
        if "function_call" in _part_dict:
            if response_function_calls is None:
                response_function_calls = []
            response_function_calls.append(
                {
                    "type": "function",
                    "function": {
                        "name": _part_dict.get("function_call").get("name"),
                        "arguments": json.dumps(_part_dict.get("function_call").get("args")),
                    },
                }
            )

        # -*- Create assistant message
        assistant_message = Message(
            role=response_role or "assistant",
            content=response_text,
        )
        # -*- Add tool calls to assistant message
        if response_function_calls is not None:
            assistant_message.tool_calls = response_function_calls

        # -*- Update usage metrics
        # Add response time to metrics
        assistant_message.metrics["time"] = response_timer.elapsed
        if "response_times" not in self.metrics:
            self.metrics["response_times"] = []
        self.metrics["response_times"].append(response_timer.elapsed)
        # TODO: Add token usage to metrics

        # -*- Add assistant message to messages
        messages.append(assistant_message)
        assistant_message.log()

        # -*- Parse and run function calls
        if assistant_message.tool_calls is not None:
            final_response = ""
            function_calls_to_run: List[FunctionCall] = []
            for tool_call in assistant_message.tool_calls:
                _tool_call_id = tool_call.get("id")
                _function_call = get_function_call_for_tool_call(tool_call, self.functions)
                if _function_call is None:
                    messages.append(
                        Message(role="tool", tool_call_id=_tool_call_id, content="Could not find function to call.")
                    )
                    continue
                if _function_call.error is not None:
                    messages.append(Message(role="tool", tool_call_id=_tool_call_id, content=_function_call.error))
                    continue
                function_calls_to_run.append(_function_call)

            if self.show_tool_calls:
                if len(function_calls_to_run) == 1:
                    final_response += f"\n - Running: {function_calls_to_run[0].get_call_str()}\n\n"
                elif len(function_calls_to_run) > 1:
                    final_response += "\nRunning:"
                    for _f in function_calls_to_run:
                        final_response += f"\n - {_f.get_call_str()}"
                    final_response += "\n\n"

            function_call_results = self.run_function_calls(function_calls_to_run)
            if len(function_call_results) > 0:
                messages.extend(function_call_results)
            # -*- Get new response using result of tool call
            final_response += self.response(messages=messages)
            return final_response
        logger.debug("---------- VertexAI Response End ----------")
        return assistant_message.get_content_string()

    def response_stream(self, messages: List[Message]) -> Iterator[str]:
        logger.debug("---------- VertexAI Response Start ----------")
        # -*- Log messages for debugging
        for m in messages:
            m.log()

        response_role: Optional[str] = None
        response_function_calls: Optional[List[Dict[str, Any]]] = None
        assistant_message_content = ""
        response_timer = Timer()
        response_timer.start()
        for response in self.invoke_stream(messages=messages):
            # logger.debug(f"VertexAI response type: {type(response)}")
            # logger.debug(f"VertexAI response: {response}")

            # -*- Parse response
            response_candidates: List[GenerationResponseCandidate] = response.candidates
            response_content: GenerationResponseContent = response_candidates[0].content
            if response_role is None:
                response_role = response_content.role
            response_parts: List[GenerationResponsePart] = response_content.parts
            _part_dict = response_parts[0].to_dict()

            # -*- Return text if present, otherwise get function call
            if "text" in _part_dict:
                response_text = _part_dict.get("text")
                yield response_text
                assistant_message_content += response_text

            # -*- Parse function calls
            if "function_call" in _part_dict:
                if response_function_calls is None:
                    response_function_calls = []
                response_function_calls.append(
                    {
                        "type": "function",
                        "function": {
                            "name": _part_dict.get("function_call").get("name"),
                            "arguments": json.dumps(_part_dict.get("function_call").get("args")),
                        },
                    }
                )

        response_timer.stop()
        logger.debug(f"Time to generate response: {response_timer.elapsed:.4f}s")

        # -*- Create assistant message
        assistant_message = Message(role=response_role or "assistant")
        # -*- Add content to assistant message
        if assistant_message_content != "":
            assistant_message.content = assistant_message_content
        # -*- Add tool calls to assistant message
        if response_function_calls is not None:
            assistant_message.tool_calls = response_function_calls

        # -*- Add assistant message to messages
        messages.append(assistant_message)
        assistant_message.log()

        # -*- Parse and run function calls
        if assistant_message.tool_calls is not None:
            function_calls_to_run: List[FunctionCall] = []
            for tool_call in assistant_message.tool_calls:
                _tool_call_id = tool_call.get("id")
                _function_call = get_function_call_for_tool_call(tool_call, self.functions)
                if _function_call is None:
                    messages.append(
                        Message(role="tool", tool_call_id=_tool_call_id, content="Could not find function to call.")
                    )
                    continue
                if _function_call.error is not None:
                    messages.append(Message(role="tool", tool_call_id=_tool_call_id, content=_function_call.error))
                    continue
                function_calls_to_run.append(_function_call)

            if self.show_tool_calls:
                if len(function_calls_to_run) == 1:
                    yield f"\n - Running: {function_calls_to_run[0].get_call_str()}\n\n"
                elif len(function_calls_to_run) > 1:
                    yield "\nRunning:"
                    for _f in function_calls_to_run:
                        yield f"\n - {_f.get_call_str()}"
                    yield "\n\n"

            function_call_results = self.run_function_calls(function_calls_to_run)
            if len(function_call_results) > 0:
                messages.extend(function_call_results)
            # -*- Yield new response using results of tool calls
            yield from self.response_stream(messages=messages)
        logger.debug("---------- VertexAI Response End ----------")