Spaces:
Runtime error
Runtime error
File size: 17,806 Bytes
105b369 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
import json
from textwrap import dedent
from typing import Optional, List, Dict, Any, Iterator
from phi.llm.base import LLM
from phi.llm.message import Message
from phi.tools.function import FunctionCall
from phi.utils.log import logger
from phi.utils.timer import Timer
from phi.utils.tools import get_function_call_for_tool_call
try:
from cohere import Client as CohereClient
from cohere.types.tool import Tool as CohereTool
from cohere.types.tool_call import ToolCall as CohereToolCall
from cohere.types.non_streamed_chat_response import NonStreamedChatResponse
from cohere.types.streamed_chat_response import (
StreamedChatResponse,
StreamedChatResponse_StreamStart,
StreamedChatResponse_TextGeneration,
StreamedChatResponse_ToolCallsGeneration,
)
from cohere.types.chat_request_tool_results_item import ChatRequestToolResultsItem
from cohere.types.tool_parameter_definitions_value import ToolParameterDefinitionsValue
except ImportError:
logger.error("`cohere` not installed")
raise
class CohereChat(LLM):
name: str = "cohere"
model: str = "command-r"
# -*- Request parameters
temperature: Optional[float] = None
max_tokens: Optional[int] = None
top_k: Optional[int] = None
top_p: Optional[float] = None
frequency_penalty: Optional[float] = None
presence_penalty: Optional[float] = None
request_params: Optional[Dict[str, Any]] = None
# Add chat history to the cohere messages instead of using the conversation_id
add_chat_history: bool = False
# -*- Client parameters
api_key: Optional[str] = None
client_params: Optional[Dict[str, Any]] = None
# -*- Provide the Cohere client manually
cohere_client: Optional[CohereClient] = None
@property
def client(self) -> CohereClient:
if self.cohere_client:
return self.cohere_client
_client_params: Dict[str, Any] = {}
if self.api_key:
_client_params["api_key"] = self.api_key
return CohereClient(**_client_params)
@property
def api_kwargs(self) -> Dict[str, Any]:
_request_params: Dict[str, Any] = {}
if self.run_id is not None:
_request_params["conversation_id"] = self.run_id
if self.temperature:
_request_params["temperature"] = self.temperature
if self.max_tokens:
_request_params["max_tokens"] = self.max_tokens
if self.top_k:
_request_params["top_k"] = self.top_k
if self.top_p:
_request_params["top_p"] = self.top_p
if self.frequency_penalty:
_request_params["frequency_penalty"] = self.frequency_penalty
if self.presence_penalty:
_request_params["presence_penalty"] = self.presence_penalty
if self.request_params:
_request_params.update(self.request_params)
return _request_params
def get_tools(self) -> Optional[List[CohereTool]]:
if not self.functions:
return None
# Returns the tools in the format required by the Cohere API
return [
CohereTool(
name=f_name,
description=function.description or "",
parameter_definitions={
param_name: ToolParameterDefinitionsValue(
type=param_info["type"] if isinstance(param_info["type"], str) else param_info["type"][0],
required="null" not in param_info["type"],
)
for param_name, param_info in function.parameters.get("properties", {}).items()
},
)
for f_name, function in self.functions.items()
]
def invoke(
self, messages: List[Message], tool_results: Optional[List[ChatRequestToolResultsItem]] = None
) -> NonStreamedChatResponse:
api_kwargs: Dict[str, Any] = self.api_kwargs
chat_message: Optional[str] = None
if self.add_chat_history:
logger.debug("Providing chat_history to cohere")
chat_history = []
for m in messages:
if m.role == "system" and "preamble" not in api_kwargs:
api_kwargs["preamble"] = m.content
elif m.role == "user":
if chat_message is not None:
# Add the existing chat_message to the chat_history
chat_history.append({"role": "USER", "message": chat_message})
# Update the chat_message to the new user message
chat_message = m.get_content_string()
else:
chat_history.append({"role": "CHATBOT", "message": m.get_content_string() or ""})
api_kwargs["chat_history"] = chat_history
else:
# Set first system message as preamble
for m in messages:
if m.role == "system" and "preamble" not in api_kwargs:
api_kwargs["preamble"] = m.get_content_string()
break
# Set last user message as chat_message
for m in reversed(messages):
if m.role == "user":
chat_message = m.get_content_string()
break
if self.tools:
api_kwargs["tools"] = self.get_tools()
if tool_results:
api_kwargs["tool_results"] = tool_results
return self.client.chat(message=chat_message or "", model=self.model, **api_kwargs)
def invoke_stream(
self, messages: List[Message], tool_results: Optional[List[ChatRequestToolResultsItem]] = None
) -> Iterator[StreamedChatResponse]:
api_kwargs: Dict[str, Any] = self.api_kwargs
chat_message: Optional[str] = None
if self.add_chat_history:
logger.debug("Providing chat_history to cohere")
chat_history = []
for m in messages:
if m.role == "system" and "preamble" not in api_kwargs:
api_kwargs["preamble"] = m.get_content_string()
elif m.role == "user":
if chat_message is not None:
# Add the existing chat_message to the chat_history
chat_history.append({"role": "USER", "message": chat_message})
# Update the chat_message to the new user message
chat_message = m.get_content_string()
else:
chat_history.append({"role": "CHATBOT", "message": m.get_content_string() or ""})
api_kwargs["chat_history"] = chat_history
else:
# Set first system message as preamble
for m in messages:
if m.role == "system" and "preamble" not in api_kwargs:
api_kwargs["preamble"] = m.get_content_string()
break
# Set last user message as chat_message
for m in reversed(messages):
if m.role == "user":
chat_message = m.get_content_string()
break
if self.tools:
api_kwargs["tools"] = self.get_tools()
if tool_results:
api_kwargs["tool_results"] = tool_results
logger.debug(f"Chat message: {chat_message}")
return self.client.chat_stream(message=chat_message or "", model=self.model, **api_kwargs)
def response(self, messages: List[Message], tool_results: Optional[List[ChatRequestToolResultsItem]] = None) -> str:
logger.debug("---------- Cohere Response Start ----------")
# -*- Log messages for debugging
for m in messages:
m.log()
response_timer = Timer()
response_timer.start()
response: NonStreamedChatResponse = self.invoke(messages=messages, tool_results=tool_results)
response_timer.stop()
logger.debug(f"Time to generate response: {response_timer.elapsed:.4f}s")
# -*- Parse response
response_content = response.text
response_tool_calls: Optional[List[CohereToolCall]] = response.tool_calls
# -*- Create assistant message
assistant_message = Message(role="assistant", content=response_content)
# -*- Get tool calls from response
if response_tool_calls:
tool_calls: List[Dict[str, Any]] = []
for tools in response_tool_calls:
tool_calls.append(
{
"type": "function",
"function": {
"name": tools.name,
"arguments": json.dumps(tools.parameters),
},
}
)
if len(tool_calls) > 0:
assistant_message.tool_calls = tool_calls
# -*- Update usage metrics
# Add response time to metrics
assistant_message.metrics["time"] = response_timer.elapsed
if "response_times" not in self.metrics:
self.metrics["response_times"] = []
self.metrics["response_times"].append(response_timer.elapsed)
# -*- Add assistant message to messages
messages.append(assistant_message)
assistant_message.log()
# -*- Run function call
if assistant_message.tool_calls is not None and self.run_tools:
final_response = ""
function_calls_to_run: List[FunctionCall] = []
for tool_call in assistant_message.tool_calls:
_function_call = get_function_call_for_tool_call(tool_call, self.functions)
if _function_call is None:
messages.append(Message(role="user", content="Could not find function to call."))
continue
if _function_call.error is not None:
messages.append(Message(role="user", content=_function_call.error))
continue
function_calls_to_run.append(_function_call)
if self.show_tool_calls:
if len(function_calls_to_run) == 1:
final_response += f" - Running: {function_calls_to_run[0].get_call_str()}\n\n"
elif len(function_calls_to_run) > 1:
final_response += "Running:"
for _f in function_calls_to_run:
final_response += f"\n - {_f.get_call_str()}"
final_response += "\n\n"
function_call_results = self.run_function_calls(function_calls_to_run, role="user")
# Making sure the length of tool calls and function call results are the same to avoid unexpected behavior
if response_tool_calls is not None and 0 < len(function_call_results) == len(response_tool_calls):
# Constructs a list named tool_results, where each element is a dictionary that contains details of tool calls and their outputs.
# It pairs each tool call in response_tool_calls with its corresponding result in function_call_results.
tool_results = [
ChatRequestToolResultsItem(
call=tool_call, outputs=[tool_call.parameters, {"result": fn_result.content}]
)
for tool_call, fn_result in zip(response_tool_calls, function_call_results)
]
messages.append(Message(role="user", content="Tool result"))
# logger.debug(f"Tool results: {tool_results}")
# -*- Yield new response using results of tool calls
final_response += self.response(messages=messages, tool_results=tool_results)
return final_response
logger.debug("---------- Cohere Response End ----------")
# -*- Return content if no function calls are present
if assistant_message.content is not None:
return assistant_message.get_content_string()
return "Something went wrong, please try again."
def response_stream(
self, messages: List[Message], tool_results: Optional[List[ChatRequestToolResultsItem]] = None
) -> Any:
logger.debug("---------- Cohere Response Start ----------")
# -*- Log messages for debugging
for m in messages:
m.log()
assistant_message_content = ""
tool_calls: List[Dict[str, Any]] = []
response_tool_calls: List[CohereToolCall] = []
response_timer = Timer()
response_timer.start()
for response in self.invoke_stream(messages=messages, tool_results=tool_results):
# logger.debug(f"Cohere response type: {type(response)}")
# logger.debug(f"Cohere response: {response}")
if isinstance(response, StreamedChatResponse_StreamStart):
pass
if isinstance(response, StreamedChatResponse_TextGeneration):
if response.text is not None:
assistant_message_content += response.text
yield response.text
# Detect if response is a tool call
if isinstance(response, StreamedChatResponse_ToolCallsGeneration):
for tc in response.tool_calls:
response_tool_calls.append(tc)
tool_calls.append(
{
"type": "function",
"function": {
"name": tc.name,
"arguments": json.dumps(tc.parameters),
},
}
)
response_timer.stop()
logger.debug(f"Time to generate response: {response_timer.elapsed:.4f}s")
# -*- Create assistant message
assistant_message = Message(role="assistant", content=assistant_message_content)
# -*- Add tool calls to assistant message
if len(tool_calls) > 0:
assistant_message.tool_calls = tool_calls
# -*- Update usage metrics
# Add response time to metrics
assistant_message.metrics["time"] = response_timer.elapsed
if "response_times" not in self.metrics:
self.metrics["response_times"] = []
self.metrics["response_times"].append(response_timer.elapsed)
# -*- Add assistant message to messages
messages.append(assistant_message)
assistant_message.log()
# -*- Parse and run function call
if assistant_message.tool_calls is not None and self.run_tools:
function_calls_to_run: List[FunctionCall] = []
for tool_call in assistant_message.tool_calls:
_function_call = get_function_call_for_tool_call(tool_call, self.functions)
if _function_call is None:
messages.append(Message(role="user", content="Could not find function to call."))
continue
if _function_call.error is not None:
messages.append(Message(role="user", content=_function_call.error))
continue
function_calls_to_run.append(_function_call)
if self.show_tool_calls:
if len(function_calls_to_run) == 1:
yield f"- Running: {function_calls_to_run[0].get_call_str()}\n\n"
elif len(function_calls_to_run) > 1:
yield "Running:"
for _f in function_calls_to_run:
yield f"\n - {_f.get_call_str()}"
yield "\n\n"
function_call_results = self.run_function_calls(function_calls_to_run, role="user")
# Making sure the length of tool calls and function call results are the same to avoid unexpected behavior
if response_tool_calls is not None and 0 < len(function_call_results) == len(tool_calls):
# Constructs a list named tool_results, where each element is a dictionary that contains details of tool calls and their outputs.
# It pairs each tool call in response_tool_calls with its corresponding result in function_call_results.
tool_results = [
ChatRequestToolResultsItem(
call=tool_call, outputs=[tool_call.parameters, {"result": fn_result.content}]
)
for tool_call, fn_result in zip(response_tool_calls, function_call_results)
]
messages.append(Message(role="user", content="Tool result"))
# logger.debug(f"Tool results: {tool_results}")
# -*- Yield new response using results of tool calls
yield from self.response_stream(messages=messages, tool_results=tool_results)
logger.debug("---------- Cohere Response End ----------")
def get_tool_call_prompt(self) -> Optional[str]:
if self.functions is not None and len(self.functions) > 0:
preamble = """\
## Task & Context
You help people answer their questions and other requests interactively. You will be asked a very wide array of requests on all kinds of topics. You will be equipped with a wide range of search engines or similar tools to help you, which you use to research your answer. You should focus on serving the user's needs as best you can, which will be wide-ranging.
## Style Guide
Unless the user asks for a different style of answer, you should answer in full sentences, using proper grammar and spelling.
"""
return dedent(preamble)
return None
def get_system_prompt_from_llm(self) -> Optional[str]:
return self.get_tool_call_prompt()
|