File size: 2,480 Bytes
652da5f
7966d73
 
a8dee9f
8db18be
f4b6c0f
7966d73
bf8dbf8
 
7966d73
 
 
 
 
 
d84a343
7966d73
 
 
 
 
 
2af1f9b
7966d73
 
d84a343
7966d73
 
 
 
 
 
e1e6e43
7966d73
 
 
 
 
 
 
 
 
 
 
 
 
afc65e5
c092dcd
 
7966d73
 
 
5ee6f5d
48d04ca
 
7966d73
bd22ac4
 
 
 
7966d73
 
 
 
ccb90bc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
#---------------------AI Paraphraser - iFrame code --------------
# With direct model load
#----------------------------------------------------------------
#----------------------------------------------------------------

import transformers
import gradio as gr
import torch

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

tokenizer = AutoTokenizer.from_pretrained("humarin/chatgpt_paraphraser_on_T5_base")
model = AutoModelForSeq2SeqLM.from_pretrained("humarin/chatgpt_paraphraser_on_T5_base")

def paraphrase(
    Content_to_Rephrase,
    num_beams=5,
    num_beam_groups=5,
    num_return_sequences=5,
    repetition_penalty=10.0,
    diversity_penalty=3.0,
    no_repeat_ngram_size=2,
    max_length=5000
):
    input_ids = tokenizer(
        f'paraphrase: {Content_to_Rephrase}',
        return_tensors="pt", padding="longest",
        max_length=max_length,
        truncation=True,
    ).input_ids
    
    outputs = model.generate(
        input_ids, repetition_penalty=repetition_penalty,
        num_return_sequences=num_return_sequences, no_repeat_ngram_size=no_repeat_ngram_size,
        num_beams=num_beams, num_beam_groups=num_beam_groups,
        max_length=max_length, diversity_penalty=diversity_penalty
    )

    res = tokenizer.batch_decode(outputs, skip_special_tokens=True)
    res1 = res [0]
    res2 = res [1]
    res3 = res [3]
    res4 = res [4]
    
    return res1, res2, res3

output1 = gr.Textbox(label="Rephrased: Option 1")
output2 = gr.Textbox(label="Rephrased: Option 2")
output3 = gr.Textbox(label="Rephrased: Option 3")

iface = gr.Interface(fn=paraphrase, 
                     inputs=["text"],
                     outputs=[output1, output2, output3],
                     title="Free AI Sentence Rephraser",
                     description="<ul><li>Paste text in the input box and press 'Submit'.</li><li>Max length: ~35 words (larger content is summarized)</li><li>The rephrased sentences *may not* be better than the original input.</li><li>Model 'humarin' pre-trained by ChatGPT. Temp = 0.7</li></ul>",
                     examples=[
                                ["With the humble is wisdom."],
                                ["Hatred stirs up strife."],
                                ["The way of a fool is right in his own eyes."],
                                ["Righteousness leads to life."],
                              ],
                     cache_examples=True,
                    )

iface.launch()