Spaces:
Sleeping
Sleeping
File size: 6,569 Bytes
64bf706 3aaab28 64bf706 3aaab28 64bf706 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import torch
from models import VQVAE, build_vae_var
import torch.nn as nn
import torch.nn.functional as F
from transformers import AutoTokenizer, SiglipTextModel
from peft import LoraConfig, get_peft_model
from torchvision.transforms import ToPILImage
import random
import gradio as gr
class SimpleAdapter(nn.Module):
def __init__(self, input_dim=512, hidden_dim=1024, out_dim=1024):
super(SimpleAdapter, self).__init__()
self.layer1 = nn.Linear(input_dim, hidden_dim)
self.norm0 = nn.LayerNorm(input_dim)
self.activation1 = nn.GELU()
self.layer2 = nn.Linear(hidden_dim, out_dim)
self.norm2 = nn.LayerNorm(out_dim)
self._initialize_weights()
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight, gain=0.001)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.LayerNorm):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
def forward(self, x):
x = self.norm0(x)
x = self.layer1(x)
x = self.activation1(x)
x = self.layer2(x)
x = self.norm2(x)
return x
class InrenceTextVAR(nn.Module):
def __init__(self, pl_checkpoint=None, start_class_id=578, hugging_face_token=None, siglip_model='google/siglip-base-patch16-224', device="cpu", MODEL_DEPTH=16):
super(InrenceTextVAR, self).__init__()
self.device = device
self.class_id = start_class_id
# Define layers
patch_nums = (1, 2, 3, 4, 5, 6, 8, 10, 13, 16)
self.vae, self.var = build_vae_var(
V=4096, Cvae=32, ch=160, share_quant_resi=4,
device=device, patch_nums=patch_nums,
num_classes=1000, depth=MODEL_DEPTH, shared_aln=False,
)
self.text_processor = AutoTokenizer.from_pretrained(siglip_model, token=hugging_face_token)
self.siglip_text_encoder = SiglipTextModel.from_pretrained(siglip_model, token=hugging_face_token).to(device)
self.adapter = SimpleAdapter(
input_dim=self.siglip_text_encoder.config.hidden_size,
out_dim=self.var.C # Ensure dimensional consistency
).to(device)
self.apply_lora_to_var()
if pl_checkpoint is not None:
state_dict = torch.load(pl_checkpoint, map_location="cpu")['state_dict']
var_state_dict = {k[len('var.'):]: v for k, v in state_dict.items() if k.startswith('var.')}
vae_state_dict = {k[len('vae.'):]: v for k, v in state_dict.items() if k.startswith('vae.')}
adapter_state_dict = {k[len('adapter.'):]: v for k, v in state_dict.items() if k.startswith('adapter.')}
self.var.load_state_dict(var_state_dict)
self.vae.load_state_dict(vae_state_dict)
self.adapter.load_state_dict(adapter_state_dict)
del self.vae.encoder
def apply_lora_to_var(self):
"""
Applies LoRA (Low-Rank Adaptation) to the VAR model.
"""
def find_linear_module_names(model):
linear_module_names = []
for name, module in model.named_modules():
if isinstance(module, nn.Linear):
linear_module_names.append(name)
return linear_module_names
linear_module_names = find_linear_module_names(self.var)
lora_config = LoraConfig(
r=8,
lora_alpha=32,
target_modules=linear_module_names,
lora_dropout=0.05,
bias="none",
)
self.var = get_peft_model(self.var, lora_config)
@torch.no_grad()
def generate_image(self, text, beta=1, seed=None, more_smooth=False, top_k=0, top_p=0.9):
if seed is None:
seed = random.randint(0, 2**32 - 1)
inputs = self.text_processor([text], padding="max_length", return_tensors="pt").to(self.device)
outputs = self.siglip_text_encoder(**inputs)
pooled_output = outputs.pooler_output # pooled (EOS token) states
pooled_output = F.normalize(pooled_output, p=2, dim=-1) # Normalize delta condition
cond_delta = F.normalize(pooled_output, p=2, dim=-1).to(self.device) # Use correct device
cond_delta = self.adapter(cond_delta)
cond_delta = F.normalize(cond_delta, p=2, dim=-1) # Normalize delta condition
generated_images = self.var.autoregressive_infer_cfg(
B=1,
label_B=self.class_id,
delta_condition=cond_delta[:1],
beta=beta,
alpha=1,
top_k=top_k,
top_p=top_p,
more_smooth=more_smooth,
g_seed=seed
)
image = ToPILImage()(generated_images[0].cpu())
return image
if __name__ == '__main__':
# Initialize the model
checkpoint = 'VARtext_v1.pth' # Replace with your actual checkpoint path
device = 'cpu' if not torch.cuda.is_available() else 'cuda'
state_dict = torch.load(checkpoint, map_location="cpu")
model = InrenceTextVAR(device=device)
model.load_state_dict(state_dict)
model.to(device)
def generate_image_gradio(text, beta=1.0, seed=None, more_smooth=False, top_k=0, top_p=0.9):
print(f"Generating image for text: {text}\n"
f"beta: {beta}\n"
f"seed: {seed}\n"
f"more_smooth: {more_smooth}\n"
f"top_k: {top_k}\n"
f"top_p: {top_p}\n")
image = model.generate_image(text, beta=beta, seed=seed, more_smooth=more_smooth, top_k=int(top_k), top_p=top_p)
return image
with gr.Blocks() as demo:
gr.Markdown("# Text to Image/Video Generator")
with gr.Tab("Generate Image"):
text_input = gr.Textbox(label="Input Text")
beta_input = gr.Slider(label="Beta", minimum=0.0, maximum=2.5, step=0.05, value=1.0)
seed_input = gr.Number(label="Seed", value=None)
more_smooth_input = gr.Checkbox(label="More Smooth", value=False)
top_k_input = gr.Number(label="Top K", value=0)
top_p_input = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, step=0.01, value=0.9)
generate_button = gr.Button("Generate Image")
image_output = gr.Image(label="Generated Image")
generate_button.click(
generate_image_gradio,
inputs=[text_input, beta_input, seed_input, more_smooth_input, top_k_input, top_p_input],
outputs=image_output
)
demo.launch() |