Spaces:
Running
Running
File size: 10,597 Bytes
64bf706 3aaab28 64bf706 3aaab28 64bf706 3aaab28 64bf706 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import torch
from models import VQVAE, build_vae_var
import torch.nn as nn
import torch.nn.functional as F
from transformers import AutoTokenizer, SiglipTextModel
from peft import LoraConfig, get_peft_model
import random
from torchvision.transforms import ToPILImage
import numpy as np
from moviepy.editor import ImageSequenceClip
import random
import gradio as gr
import tempfile
import os
class SimpleAdapter(nn.Module):
def __init__(self, input_dim=512, hidden_dim=1024, out_dim=1024):
super(SimpleAdapter, self).__init__()
self.layer1 = nn.Linear(input_dim, hidden_dim)
self.norm0 = nn.LayerNorm(input_dim)
self.activation1 = nn.GELU()
self.layer2 = nn.Linear(hidden_dim, out_dim)
self.norm2 = nn.LayerNorm(out_dim)
self._initialize_weights()
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight, gain=0.001)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.LayerNorm):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
def forward(self, x):
x = self.norm0(x)
x = self.layer1(x)
x = self.activation1(x)
x = self.layer2(x)
x = self.norm2(x)
return x
class InrenceTextVAR(nn.Module):
def __init__(self, pl_checkpoint=None, start_class_id=578, hugging_face_token=None, siglip_model='google/siglip-base-patch16-224', device="cpu", MODEL_DEPTH=16):
super(InrenceTextVAR, self).__init__()
self.device = device
self.class_id = start_class_id
# Define layers
patch_nums = (1, 2, 3, 4, 5, 6, 8, 10, 13, 16)
self.vae, self.var = build_vae_var(
V=4096, Cvae=32, ch=160, share_quant_resi=4,
device=device, patch_nums=patch_nums,
num_classes=1000, depth=MODEL_DEPTH, shared_aln=False,
)
self.text_processor = AutoTokenizer.from_pretrained(siglip_model, token=hugging_face_token)
self.siglip_text_encoder = SiglipTextModel.from_pretrained(siglip_model, token=hugging_face_token).to(device)
self.adapter = SimpleAdapter(
input_dim=self.siglip_text_encoder.config.hidden_size,
out_dim=self.var.C # Ensure dimensional consistency
).to(device)
self.apply_lora_to_var()
if pl_checkpoint is not None:
state_dict = torch.load(pl_checkpoint, map_location="cpu")['state_dict']
var_state_dict = {k[len('var.'):]: v for k, v in state_dict.items() if k.startswith('var.')}
vae_state_dict = {k[len('vae.'):]: v for k, v in state_dict.items() if k.startswith('vae.')}
adapter_state_dict = {k[len('adapter.'):]: v for k, v in state_dict.items() if k.startswith('adapter.')}
self.var.load_state_dict(var_state_dict)
self.vae.load_state_dict(vae_state_dict)
self.adapter.load_state_dict(adapter_state_dict)
del self.vae.encoder
def apply_lora_to_var(self):
"""
Applies LoRA (Low-Rank Adaptation) to the VAR model.
"""
def find_linear_module_names(model):
linear_module_names = []
for name, module in model.named_modules():
if isinstance(module, nn.Linear):
linear_module_names.append(name)
return linear_module_names
linear_module_names = find_linear_module_names(self.var)
lora_config = LoraConfig(
r=8,
lora_alpha=32,
target_modules=linear_module_names,
lora_dropout=0.05,
bias="none",
)
self.var = get_peft_model(self.var, lora_config)
@torch.no_grad()
def generate_image(self, text, beta=1, seed=None, more_smooth=False, top_k=0, top_p=0.9):
if seed is None:
seed = random.randint(0, 2**32 - 1)
inputs = self.text_processor([text], padding="max_length", return_tensors="pt").to(self.device)
outputs = self.siglip_text_encoder(**inputs)
pooled_output = outputs.pooler_output # pooled (EOS token) states
pooled_output = F.normalize(pooled_output, p=2, dim=-1) # Normalize delta condition
cond_delta = F.normalize(pooled_output, p=2, dim=-1).to(self.device) # Use correct device
cond_delta = self.adapter(cond_delta)
cond_delta = F.normalize(cond_delta, p=2, dim=-1) # Normalize delta condition
generated_images = self.var.autoregressive_infer_cfg(
B=1,
label_B=self.class_id,
delta_condition=cond_delta[:1],
beta=beta,
alpha=1,
top_k=top_k,
top_p=top_p,
more_smooth=more_smooth,
g_seed=seed
)
image = ToPILImage()(generated_images[0].cpu())
return image
@torch.no_grad()
def generate_video(self, text, start_beta, target_beta, fps, length, top_k=0, top_p=0.9, seed=None,
more_smooth=False,
output_filename='output_video.mp4'):
if seed is None:
seed = random.randint(0, 2 ** 32 - 1)
num_frames = int(fps * length)
images = []
# Define an easing function for smoother interpolation
def ease_in_out(t):
return t * t * (3 - 2 * t)
# Generate t values between 0 and 1
t_values = np.linspace(0, 1, num_frames)
# Apply the easing function
eased_t_values = ease_in_out(t_values)
# Interpolate beta values using the eased t values
beta_values = start_beta + (target_beta - start_beta) * eased_t_values
for beta in beta_values:
image = self.generate_image(text, beta=beta, seed=seed, more_smooth=more_smooth, top_k=top_k, top_p=top_p)
images.append(np.array(image))
# Create a video from images
clip = ImageSequenceClip(images, fps=fps)
clip.write_videofile(output_filename, codec='libx264')
if __name__ == '__main__':
# Initialize the model
checkpoint = 'VARtext_v1.pth' # Replace with your actual checkpoint path
device = 'cpu' if not torch.cuda.is_available() else 'cuda'
state_dict = torch.load(checkpoint, map_location="cpu")
model = InrenceTextVAR(device=device)
model.load_state_dict(state_dict)
model.to(device)
def generate_image_gradio(text, beta=1.0, seed=None, more_smooth=False, top_k=0, top_p=0.9):
print(f"Generating image for text: {text}\n"
f"beta: {beta}\n"
f"seed: {seed}\n"
f"more_smooth: {more_smooth}\n"
f"top_k: {top_k}\n"
f"top_p: {top_p}\n")
image = model.generate_image(text, beta=beta, seed=seed, more_smooth=more_smooth, top_k=int(top_k), top_p=top_p)
return image
def generate_video_gradio(text, start_beta=1.0, target_beta=1.0, fps=10, length=5.0, top_k=0, top_p=0.9, seed=None, more_smooth=False, progress=gr.Progress()):
print(f"Generating video for text: {text}\n"
f"start_beta: {start_beta}\n"
f"target_beta: {target_beta}\n"
f"seed: {seed}\n"
f"more_smooth: {more_smooth}\n"
f"top_k: {top_k}\n"
f"top_p: {top_p}"
f"fps: {fps}\n"
f"length: {length}\n")
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmpfile:
output_filename = tmpfile.name
num_frames = int(fps * length)
beta_values = np.linspace(start_beta, target_beta, num_frames)
images = []
for i, beta in enumerate(beta_values):
image = model.generate_image(text, beta=beta, seed=seed, more_smooth=more_smooth, top_k=top_k, top_p=top_p)
images.append(np.array(image))
# Update progress
progress((i + 1) / num_frames)
# Yield the frame image to update the GUI
yield image, gr.update()
# After generating all frames, create the video
clip = ImageSequenceClip(images, fps=fps)
clip.write_videofile(output_filename, codec='libx264')
# Yield the final video output
yield gr.update(), output_filename
with gr.Blocks() as demo:
gr.Markdown("# Text to Image/Video Generator")
with gr.Tab("Generate Image"):
text_input = gr.Textbox(label="Input Text")
beta_input = gr.Slider(label="Beta", minimum=0.0, maximum=2.5, step=0.05, value=1.0)
seed_input = gr.Number(label="Seed", value=None)
more_smooth_input = gr.Checkbox(label="More Smooth", value=False)
top_k_input = gr.Number(label="Top K", value=0)
top_p_input = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, step=0.01, value=0.9)
generate_button = gr.Button("Generate Image")
image_output = gr.Image(label="Generated Image")
generate_button.click(
generate_image_gradio,
inputs=[text_input, beta_input, seed_input, more_smooth_input, top_k_input, top_p_input],
outputs=image_output
)
with gr.Tab("Generate Video"):
text_input_video = gr.Textbox(label="Input Text")
start_beta_input = gr.Slider(label="Start Beta", minimum=0.0, maximum=2.5, step=0.05, value=0)
target_beta_input = gr.Slider(label="Target Beta",minimum=0.0, maximum=2.5, step=0.05, value=1.0)
fps_input = gr.Number(label="FPS", value=10)
length_input = gr.Number(label="Length (seconds)", value=5.0)
seed_input_video = gr.Number(label="Seed", value=None)
more_smooth_input_video = gr.Checkbox(label="More Smooth", value=False)
top_k_input_video = gr.Number(label="Top K", value=0)
top_p_input_video = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, step=0.01, value=0.9)
generate_video_button = gr.Button("Generate Video")
frame_output = gr.Image(label="Current Frame")
video_output = gr.Video(label="Generated Video")
generate_video_button.click(
generate_video_gradio,
inputs=[text_input_video, start_beta_input, target_beta_input, fps_input, length_input, top_k_input_video, top_p_input_video, seed_input_video, more_smooth_input_video],
outputs=[frame_output, video_output],
queue=True # Enable queuing to allow for progress updates
)
demo.launch() |