File size: 15,704 Bytes
86a74e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
import base64
import io
import logging

import cv2
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image

# Set up logging
logger = logging.getLogger(__name__)


def plot_image_prediction(image, predictions, title=None, figsize=(10, 8)):
    """

    Plot an image with its predictions.



    Args:

        image (PIL.Image or str): Image or path to image

        predictions (list): List of (label, probability) tuples

        title (str, optional): Plot title

        figsize (tuple): Figure size



    Returns:

        matplotlib.figure.Figure: The figure object

    """
    try:
        # Load image if path is provided
        if isinstance(image, str):
            img = Image.open(image)
        else:
            img = image

        # Create figure
        fig, (ax1, ax2) = plt.subplots(1, 2, figsize=figsize)

        # Plot image
        ax1.imshow(img)
        ax1.set_title("X-ray Image")
        ax1.axis("off")

        # Plot predictions
        if predictions:
            # Sort predictions by probability
            sorted_pred = sorted(predictions, key=lambda x: x[1], reverse=True)

            # Get top 5 predictions
            top_n = min(5, len(sorted_pred))
            labels = [pred[0] for pred in sorted_pred[:top_n]]
            probs = [pred[1] for pred in sorted_pred[:top_n]]

            # Plot horizontal bar chart
            y_pos = np.arange(top_n)
            ax2.barh(y_pos, probs, align="center")
            ax2.set_yticks(y_pos)
            ax2.set_yticklabels(labels)
            ax2.set_xlabel("Probability")
            ax2.set_title("Top Predictions")
            ax2.set_xlim(0, 1)

            # Annotate probabilities
            for i, prob in enumerate(probs):
                ax2.text(prob + 0.02, i, f"{prob:.1%}", va="center")

        # Set overall title
        if title:
            fig.suptitle(title, fontsize=16)

        fig.tight_layout()
        return fig

    except Exception as e:
        logger.error(f"Error plotting image prediction: {e}")
        # Create empty figure if error occurs
        fig, ax = plt.subplots(figsize=(8, 6))
        ax.text(0.5, 0.5, f"Error: {str(e)}", ha="center", va="center")
        return fig


def create_heatmap_overlay(image, heatmap, alpha=0.4):
    """

    Create a heatmap overlay on an X-ray image to highlight areas of interest.



    Args:

        image (PIL.Image or str): Image or path to image

        heatmap (numpy.ndarray): Heatmap array

        alpha (float): Transparency of the overlay



    Returns:

        PIL.Image: Image with heatmap overlay

    """
    try:
        # Load image if path is provided
        if isinstance(image, str):
            img = cv2.imread(image)
            if img is None:
                raise ValueError(f"Could not load image: {image}")
        elif isinstance(image, Image.Image):
            img = np.array(image)
            img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
        else:
            img = image

        # Ensure image is in BGR format for OpenCV
        if len(img.shape) == 2:  # Grayscale
            img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)

        # Resize heatmap to match image dimensions
        heatmap = cv2.resize(heatmap, (img.shape[1], img.shape[0]))

        # Normalize heatmap (0-1)
        heatmap = np.maximum(heatmap, 0)
        heatmap = np.minimum(heatmap / np.max(heatmap), 1)

        # Apply colormap (jet) to heatmap
        heatmap = np.uint8(255 * heatmap)
        heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)

        # Create overlay
        overlay = cv2.addWeighted(img, 1 - alpha, heatmap, alpha, 0)

        # Convert back to PIL image
        overlay = cv2.cvtColor(overlay, cv2.COLOR_BGR2RGB)
        overlay_img = Image.fromarray(overlay)

        return overlay_img

    except Exception as e:
        logger.error(f"Error creating heatmap overlay: {e}")
        # Return original image if error occurs
        if isinstance(image, str):
            return Image.open(image)
        elif isinstance(image, Image.Image):
            return image
        else:
            return Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))


def plot_report_entities(text, entities, figsize=(12, 8)):
    """

    Visualize entities extracted from a medical report.



    Args:

        text (str): Report text

        entities (dict): Dictionary of entities by category

        figsize (tuple): Figure size



    Returns:

        matplotlib.figure.Figure: The figure object

    """
    try:
        fig, ax = plt.subplots(figsize=figsize)
        ax.axis("off")

        # Set background color
        fig.patch.set_facecolor("#f8f9fa")
        ax.set_facecolor("#f8f9fa")

        # Title
        ax.text(
            0.5,
            0.98,
            "Medical Report Analysis",
            ha="center",
            va="top",
            fontsize=18,
            fontweight="bold",
            color="#2c3e50",
        )

        # Display entity counts
        y_pos = 0.9
        ax.text(
            0.05,
            y_pos,
            "Extracted Entities:",
            fontsize=14,
            fontweight="bold",
            color="#2c3e50",
        )
        y_pos -= 0.05

        # Define colors for different entity categories
        category_colors = {
            "problem": "#e74c3c",  # Red
            "test": "#3498db",  # Blue
            "treatment": "#2ecc71",  # Green
            "anatomy": "#9b59b6",  # Purple
        }

        # Display entities by category
        for category, items in entities.items():
            if items:
                y_pos -= 0.05
                ax.text(
                    0.1,
                    y_pos,
                    f"{category.capitalize()}:",
                    fontsize=12,
                    fontweight="bold",
                )
                y_pos -= 0.05
                ax.text(
                    0.15,
                    y_pos,
                    ", ".join(items),
                    wrap=True,
                    fontsize=11,
                    color=category_colors.get(category, "black"),
                )

        # Add the report text with highlighted entities
        y_pos -= 0.1
        ax.text(
            0.05,
            y_pos,
            "Report Text (with highlighted entities):",
            fontsize=14,
            fontweight="bold",
            color="#2c3e50",
        )
        y_pos -= 0.05

        # Get all entities to highlight
        all_entities = []
        for category, items in entities.items():
            for item in items:
                all_entities.append((item, category))

        # Sort entities by length (longest first to avoid overlap issues)
        all_entities.sort(key=lambda x: len(x[0]), reverse=True)

        # Highlight entities in text
        highlighted_text = text
        for entity, category in all_entities:
            # Escape regex special characters
            entity_escaped = (
                entity.replace("(", r"\(")
                .replace(")", r"\)")
                .replace("[", r"\[")
                .replace("]", r"\]")
            )

            # Find entity in text (word boundary)
            pattern = r"\b" + entity_escaped + r"\b"
            color_code = category_colors.get(category, "black")
            replacement = f"\\textcolor{{{color_code}}}{{{entity}}}"
            highlighted_text = highlighted_text.replace(entity, replacement)

        # Display highlighted text
        ax.text(0.05, y_pos, highlighted_text, va="top", fontsize=10, wrap=True)

        fig.tight_layout(rect=[0, 0.03, 1, 0.97])
        return fig

    except Exception as e:
        logger.error(f"Error plotting report entities: {e}")
        # Create empty figure if error occurs
        fig, ax = plt.subplots(figsize=(8, 6))
        ax.text(0.5, 0.5, f"Error: {str(e)}", ha="center", va="center")
        return fig


def plot_multimodal_results(

    fused_results, image=None, report_text=None, figsize=(12, 10)

):
    """

    Visualize the results of multimodal analysis.



    Args:

        fused_results (dict): Results from multimodal fusion

        image (PIL.Image or str, optional): Image or path to image

        report_text (str, optional): Report text

        figsize (tuple): Figure size



    Returns:

        matplotlib.figure.Figure: The figure object

    """
    try:
        # Create figure with a grid layout
        fig = plt.figure(figsize=figsize)
        gs = fig.add_gridspec(2, 2)

        # Add title
        fig.suptitle(
            "Multimodal Medical Analysis Results",
            fontsize=18,
            fontweight="bold",
            y=0.98,
        )

        # 1. Overview panel (top left)
        ax_overview = fig.add_subplot(gs[0, 0])
        ax_overview.axis("off")

        # Get severity info
        severity = fused_results.get("severity", {})
        severity_level = severity.get("level", "Unknown")
        severity_score = severity.get("score", 0)

        # Get primary finding
        primary_finding = fused_results.get("primary_finding", "Unknown")

        # Get agreement score
        agreement = fused_results.get("agreement_score", 0)

        # Create overview text
        overview_text = [
            "ANALYSIS OVERVIEW",
            f"Primary Finding: {primary_finding}",
            f"Severity Level: {severity_level} ({severity_score}/4)",
            f"Agreement Score: {agreement:.0%}",
        ]

        # Define severity colors
        severity_colors = {
            "Normal": "#2ecc71",  # Green
            "Mild": "#3498db",  # Blue
            "Moderate": "#f39c12",  # Orange
            "Severe": "#e74c3c",  # Red
            "Critical": "#c0392b",  # Dark Red
        }

        # Add overview text to the panel
        y_pos = 0.9
        ax_overview.text(
            0.5,
            y_pos,
            overview_text[0],
            fontsize=14,
            fontweight="bold",
            ha="center",
            va="center",
        )
        y_pos -= 0.15

        ax_overview.text(
            0.1, y_pos, overview_text[1], fontsize=12, ha="left", va="center"
        )
        y_pos -= 0.1

        # Severity with color
        severity_color = severity_colors.get(severity_level, "black")
        ax_overview.text(
            0.1, y_pos, "Severity Level:", fontsize=12, ha="left", va="center"
        )
        ax_overview.text(
            0.4,
            y_pos,
            severity_level,
            fontsize=12,
            color=severity_color,
            fontweight="bold",
            ha="left",
            va="center",
        )
        ax_overview.text(
            0.6, y_pos, f"({severity_score}/4)", fontsize=10, ha="left", va="center"
        )
        y_pos -= 0.1

        # Agreement score with color
        agreement_color = (
            "#2ecc71"
            if agreement > 0.7
            else "#f39c12"
            if agreement > 0.4
            else "#e74c3c"
        )
        ax_overview.text(
            0.1, y_pos, "Agreement Score:", fontsize=12, ha="left", va="center"
        )
        ax_overview.text(
            0.4,
            y_pos,
            f"{agreement:.0%}",
            fontsize=12,
            color=agreement_color,
            fontweight="bold",
            ha="left",
            va="center",
        )

        # 2. Findings panel (top right)
        ax_findings = fig.add_subplot(gs[0, 1])
        ax_findings.axis("off")

        # Get findings
        findings = fused_results.get("findings", [])

        # Add findings to the panel
        y_pos = 0.9
        ax_findings.text(
            0.5,
            y_pos,
            "KEY FINDINGS",
            fontsize=14,
            fontweight="bold",
            ha="center",
            va="center",
        )
        y_pos -= 0.1

        if findings:
            for i, finding in enumerate(findings[:5]):  # Limit to 5 findings
                ax_findings.text(0.05, y_pos, "•", fontsize=14, ha="left", va="center")
                ax_findings.text(
                    0.1, y_pos, finding, fontsize=11, ha="left", va="center", wrap=True
                )
                y_pos -= 0.15
        else:
            ax_findings.text(
                0.1,
                y_pos,
                "No specific findings detailed.",
                fontsize=11,
                ha="left",
                va="center",
            )

        # 3. Image panel (bottom left)
        ax_image = fig.add_subplot(gs[1, 0])

        if image is not None:
            # Load image if path is provided
            if isinstance(image, str):
                img = Image.open(image)
            else:
                img = image

            # Display image
            ax_image.imshow(img)
            ax_image.set_title("X-ray Image", fontsize=12)
        else:
            ax_image.text(0.5, 0.5, "No image available", ha="center", va="center")

        ax_image.axis("off")

        # 4. Recommendation panel (bottom right)
        ax_rec = fig.add_subplot(gs[1, 1])
        ax_rec.axis("off")

        # Get recommendations
        recommendations = fused_results.get("followup_recommendations", [])

        # Add recommendations to the panel
        y_pos = 0.9
        ax_rec.text(
            0.5,
            y_pos,
            "RECOMMENDATIONS",
            fontsize=14,
            fontweight="bold",
            ha="center",
            va="center",
        )
        y_pos -= 0.1

        if recommendations:
            for i, rec in enumerate(recommendations):
                ax_rec.text(0.05, y_pos, "•", fontsize=14, ha="left", va="center")
                ax_rec.text(
                    0.1, y_pos, rec, fontsize=11, ha="left", va="center", wrap=True
                )
                y_pos -= 0.15
        else:
            ax_rec.text(
                0.1,
                y_pos,
                "No specific recommendations provided.",
                fontsize=11,
                ha="left",
                va="center",
            )

        # Add disclaimer
        fig.text(
            0.5,
            0.03,
            "DISCLAIMER: This analysis is for informational purposes only and should not replace professional medical advice.",
            fontsize=9,
            style="italic",
            ha="center",
        )

        fig.tight_layout(rect=[0, 0.05, 1, 0.95])
        return fig

    except Exception as e:
        logger.error(f"Error plotting multimodal results: {e}")
        # Create empty figure if error occurs
        fig, ax = plt.subplots(figsize=(8, 6))
        ax.text(0.5, 0.5, f"Error: {str(e)}", ha="center", va="center")
        return fig


def figure_to_base64(fig):
    """

    Convert matplotlib figure to base64 string.



    Args:

        fig (matplotlib.figure.Figure): Figure object



    Returns:

        str: Base64 encoded string

    """
    try:
        buf = io.BytesIO()
        fig.savefig(buf, format="png", bbox_inches="tight")
        buf.seek(0)
        img_str = base64.b64encode(buf.read()).decode("utf-8")
        return img_str

    except Exception as e:
        logger.error(f"Error converting figure to base64: {e}")
        return ""