File size: 20,785 Bytes
86a74e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
import logging
import os
import sys
import tempfile
from pathlib import Path

import gradio as gr
import matplotlib.pyplot as plt
from PIL import Image

# Add parent directory to path
parent_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(parent_dir)

# Import our modules
from models.multimodal_fusion import MultimodalFusion
from utils.preprocessing import enhance_xray_image, normalize_report_text
from utils.visualization import (
    plot_image_prediction,
    plot_multimodal_results,
    plot_report_entities,
)

# Set up logging
logging.basicConfig(
    level=logging.INFO,
    format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
    handlers=[logging.StreamHandler(), logging.FileHandler("mediSync.log")],
)
logger = logging.getLogger(__name__)

# Create temporary directory for sample data if it doesn't exist
os.makedirs(os.path.join(parent_dir, "data", "sample"), exist_ok=True)


class MediSyncApp:
    """

    Main application class for the MediSync multi-modal medical analysis system.

    """

    def __init__(self):
        """Initialize the application and load models."""
        self.logger = logging.getLogger(__name__)
        self.logger.info("Initializing MediSync application")

        # Initialize models with None for lazy loading
        self.fusion_model = None
        self.image_model = None
        self.text_model = None

    def load_models(self):
        """

        Load models if not already loaded.



        Returns:

            bool: True if models loaded successfully, False otherwise

        """
        try:
            if self.fusion_model is None:
                self.logger.info("Loading models...")
                self.fusion_model = MultimodalFusion()
                self.image_model = self.fusion_model.image_analyzer
                self.text_model = self.fusion_model.text_analyzer
                self.logger.info("Models loaded successfully")
            return True

        except Exception as e:
            self.logger.error(f"Error loading models: {e}")
            return False

    def analyze_image(self, image):
        """

        Analyze a medical image.



        Args:

            image: Image file uploaded through Gradio



        Returns:

            tuple: (image, image_results_html, plot_as_html)

        """
        try:
            # Ensure models are loaded
            if not self.load_models() or self.image_model is None:
                return image, "Error: Models not loaded properly.", None

            # Save uploaded image to a temporary file
            temp_dir = tempfile.mkdtemp()
            temp_path = os.path.join(temp_dir, "upload.png")

            if isinstance(image, str):
                # Copy the file if it's a path
                from shutil import copyfile

                copyfile(image, temp_path)
            else:
                # Save if it's a Gradio UploadButton image
                image.save(temp_path)

            # Run image analysis
            self.logger.info(f"Analyzing image: {temp_path}")
            results = self.image_model.analyze(temp_path)

            # Create visualization
            fig = plot_image_prediction(
                image,
                results.get("predictions", []),
                f"Primary Finding: {results.get('primary_finding', 'Unknown')}",
            )

            # Convert to HTML for display
            plot_html = self.fig_to_html(fig)

            # Format results as HTML
            html_result = f"""

            <h2>X-ray Analysis Results</h2>

            <p><strong>Primary Finding:</strong> {results.get("primary_finding", "Unknown")}</p>

            <p><strong>Confidence:</strong> {results.get("confidence", 0):.1%}</p>

            <p><strong>Abnormality Detected:</strong> {"Yes" if results.get("has_abnormality", False) else "No"}</p>

            

            <h3>Top Predictions:</h3>

            <ul>

            """

            # Add top 5 predictions
            for label, prob in results.get("predictions", [])[:5]:
                html_result += f"<li>{label}: {prob:.1%}</li>"

            html_result += "</ul>"

            # Add explanation
            explanation = self.image_model.get_explanation(results)
            html_result += f"<h3>Analysis Explanation:</h3><p>{explanation}</p>"

            return image, html_result, plot_html

        except Exception as e:
            self.logger.error(f"Error in image analysis: {e}")
            return image, f"Error analyzing image: {str(e)}", None

    def analyze_text(self, text):
        """

        Analyze a medical report text.



        Args:

            text: Report text input through Gradio



        Returns:

            tuple: (text, text_results_html, entities_plot_html)

        """
        try:
            # Ensure models are loaded
            if not self.load_models() or self.text_model is None:
                return text, "Error: Models not loaded properly.", None

            # Check for empty text
            if not text or len(text.strip()) < 10:
                return (
                    text,
                    "Error: Please enter a valid medical report text (at least 10 characters).",
                    None,
                )

            # Normalize text
            normalized_text = normalize_report_text(text)

            # Run text analysis
            self.logger.info("Analyzing medical report text")
            results = self.text_model.analyze(normalized_text)

            # Get entities and create visualization
            entities = results.get("entities", {})
            fig = plot_report_entities(normalized_text, entities)

            # Convert to HTML for display
            entities_plot_html = self.fig_to_html(fig)

            # Format results as HTML
            html_result = f"""

            <h2>Medical Report Analysis Results</h2>

            <p><strong>Severity Level:</strong> {results.get("severity", {}).get("level", "Unknown")}</p>

            <p><strong>Severity Score:</strong> {results.get("severity", {}).get("score", 0)}/4</p>

            <p><strong>Confidence:</strong> {results.get("severity", {}).get("confidence", 0):.1%}</p>

            

            <h3>Key Findings:</h3>

            <ul>

            """

            # Add findings
            findings = results.get("findings", [])
            if findings:
                for finding in findings:
                    html_result += f"<li>{finding}</li>"
            else:
                html_result += "<li>No specific findings detailed.</li>"

            html_result += "</ul>"

            # Add entities
            html_result += "<h3>Extracted Medical Entities:</h3>"

            for category, items in entities.items():
                if items:
                    html_result += f"<p><strong>{category.capitalize()}:</strong> {', '.join(items)}</p>"

            # Add follow-up recommendations
            html_result += "<h3>Follow-up Recommendations:</h3><ul>"
            followups = results.get("followup_recommendations", [])

            if followups:
                for rec in followups:
                    html_result += f"<li>{rec}</li>"
            else:
                html_result += "<li>No specific follow-up recommendations.</li>"

            html_result += "</ul>"

            return text, html_result, entities_plot_html

        except Exception as e:
            self.logger.error(f"Error in text analysis: {e}")
            return text, f"Error analyzing text: {str(e)}", None

    def analyze_multimodal(self, image, text):
        """

        Perform multimodal analysis of image and text.



        Args:

            image: Image file uploaded through Gradio

            text: Report text input through Gradio



        Returns:

            tuple: (results_html, multimodal_plot_html)

        """
        try:
            # Ensure models are loaded
            if not self.load_models() or self.fusion_model is None:
                return "Error: Models not loaded properly.", None

            # Check for empty inputs
            if image is None:
                return "Error: Please upload an X-ray image for analysis.", None

            if not text or len(text.strip()) < 10:
                return (
                    "Error: Please enter a valid medical report text (at least 10 characters).",
                    None,
                )

            # Save uploaded image to a temporary file
            temp_dir = tempfile.mkdtemp()
            temp_path = os.path.join(temp_dir, "upload.png")

            if isinstance(image, str):
                # Copy the file if it's a path
                from shutil import copyfile

                copyfile(image, temp_path)
            else:
                # Save if it's a Gradio UploadButton image
                image.save(temp_path)

            # Normalize text
            normalized_text = normalize_report_text(text)

            # Run multimodal analysis
            self.logger.info("Performing multimodal analysis")
            results = self.fusion_model.analyze(temp_path, normalized_text)

            # Create visualization
            fig = plot_multimodal_results(results, image, text)

            # Convert to HTML for display
            plot_html = self.fig_to_html(fig)

            # Generate explanation
            explanation = self.fusion_model.get_explanation(results)

            # Format results as HTML
            html_result = f"""

            <h2>Multimodal Medical Analysis Results</h2>

            

            <h3>Overview</h3>

            <p><strong>Primary Finding:</strong> {results.get("primary_finding", "Unknown")}</p>

            <p><strong>Severity Level:</strong> {results.get("severity", {}).get("level", "Unknown")}</p>

            <p><strong>Severity Score:</strong> {results.get("severity", {}).get("score", 0)}/4</p>

            <p><strong>Agreement Score:</strong> {results.get("agreement_score", 0):.0%}</p>

            

            <h3>Detailed Findings</h3>

            <ul>

            """

            # Add findings
            findings = results.get("findings", [])
            if findings:
                for finding in findings:
                    html_result += f"<li>{finding}</li>"
            else:
                html_result += "<li>No specific findings detailed.</li>"

            html_result += "</ul>"

            # Add follow-up recommendations
            html_result += "<h3>Recommended Follow-up</h3><ul>"
            followups = results.get("followup_recommendations", [])

            if followups:
                for rec in followups:
                    html_result += f"<li>{rec}</li>"
            else:
                html_result += (
                    "<li>No specific follow-up recommendations provided.</li>"
                )

            html_result += "</ul>"

            # Add confidence note
            confidence = results.get("severity", {}).get("confidence", 0)
            html_result += f"""

            <p><em>Note: This analysis has a confidence level of {confidence:.0%}. 

            Please consult with healthcare professionals for official diagnosis.</em></p>

            """

            return html_result, plot_html

        except Exception as e:
            self.logger.error(f"Error in multimodal analysis: {e}")
            return f"Error in multimodal analysis: {str(e)}", None

    def enhance_image(self, image):
        """

        Enhance X-ray image contrast.



        Args:

            image: Image file uploaded through Gradio



        Returns:

            PIL.Image: Enhanced image

        """
        try:
            if image is None:
                return None

            # Save uploaded image to a temporary file
            temp_dir = tempfile.mkdtemp()
            temp_path = os.path.join(temp_dir, "upload.png")

            if isinstance(image, str):
                # Copy the file if it's a path
                from shutil import copyfile

                copyfile(image, temp_path)
            else:
                # Save if it's a Gradio UploadButton image
                image.save(temp_path)

            # Enhance image
            self.logger.info(f"Enhancing image: {temp_path}")
            output_path = os.path.join(temp_dir, "enhanced.png")
            enhance_xray_image(temp_path, output_path)

            # Load enhanced image
            enhanced = Image.open(output_path)
            return enhanced

        except Exception as e:
            self.logger.error(f"Error enhancing image: {e}")
            return image  # Return original image on error

    def fig_to_html(self, fig):
        """Convert matplotlib figure to HTML for display in Gradio."""
        try:
            import base64
            import io

            buf = io.BytesIO()
            fig.savefig(buf, format="png", bbox_inches="tight")
            buf.seek(0)
            img_str = base64.b64encode(buf.read()).decode("utf-8")
            plt.close(fig)

            return f'<img src="data:image/png;base64,{img_str}" alt="Analysis Plot">'

        except Exception as e:
            self.logger.error(f"Error converting figure to HTML: {e}")
            return "<p>Error displaying visualization.</p>"


def create_interface():
    """Create and launch the Gradio interface."""

    app = MediSyncApp()

    # Example medical report for demo
    example_report = """

    CHEST X-RAY EXAMINATION

    

    CLINICAL HISTORY: 55-year-old male with cough and fever.

    

    FINDINGS: The heart size is at the upper limits of normal. The lungs are clear without focal consolidation, 

    effusion, or pneumothorax. There is mild prominence of the pulmonary vasculature. No pleural effusion is seen. 

    There is a small nodular opacity noted in the right lower lobe measuring approximately 8mm, which is suspicious 

    and warrants further investigation. The mediastinum is unremarkable. The visualized bony structures show no acute abnormalities.

    

    IMPRESSION:

    1. Mild cardiomegaly.

    2. 8mm nodular opacity in the right lower lobe, recommend follow-up CT for further evaluation.

    3. No acute pulmonary parenchymal abnormality.

    

    RECOMMENDATIONS: Follow-up chest CT to further characterize the nodular opacity in the right lower lobe.

    """

    # Get sample image path if available
    sample_images_dir = Path(parent_dir) / "data" / "sample"
    sample_images = list(sample_images_dir.glob("*.png")) + list(
        sample_images_dir.glob("*.jpg")
    )

    sample_image_path = None
    if sample_images:
        sample_image_path = str(sample_images[0])

    # Define interface
    with gr.Blocks(
        title="MediSync: Multi-Modal Medical Analysis System", theme=gr.themes.Soft()
    ) as interface:
        gr.Markdown("""

        # MediSync: Multi-Modal Medical Analysis System

        

        This AI-powered healthcare solution combines X-ray image analysis with patient report text processing 

        to provide comprehensive medical insights.

        

        ## How to Use

        1. Upload a chest X-ray image

        2. Enter the corresponding medical report text

        3. Choose the analysis type: image-only, text-only, or multimodal (combined)

        """)

        with gr.Tab("Multimodal Analysis"):
            with gr.Row():
                with gr.Column():
                    multi_img_input = gr.Image(label="Upload X-ray Image", type="pil")
                    multi_img_enhance = gr.Button("Enhance Image")

                    multi_text_input = gr.Textbox(
                        label="Enter Medical Report Text",
                        placeholder="Enter the radiologist's report text here...",
                        lines=10,
                        value=example_report if sample_image_path is None else None,
                    )

                    multi_analyze_btn = gr.Button(
                        "Analyze Image & Text", variant="primary"
                    )

                with gr.Column():
                    multi_results = gr.HTML(label="Analysis Results")
                    multi_plot = gr.HTML(label="Visualization")

            # Set up examples if sample image exists
            if sample_image_path:
                gr.Examples(
                    examples=[[sample_image_path, example_report]],
                    inputs=[multi_img_input, multi_text_input],
                    label="Example X-ray and Report",
                )

        with gr.Tab("Image Analysis"):
            with gr.Row():
                with gr.Column():
                    img_input = gr.Image(label="Upload X-ray Image", type="pil")
                    img_enhance = gr.Button("Enhance Image")
                    img_analyze_btn = gr.Button("Analyze Image", variant="primary")

                with gr.Column():
                    img_output = gr.Image(label="Processed Image")
                    img_results = gr.HTML(label="Analysis Results")
                    img_plot = gr.HTML(label="Visualization")

            # Set up example if sample image exists
            if sample_image_path:
                gr.Examples(
                    examples=[[sample_image_path]],
                    inputs=[img_input],
                    label="Example X-ray Image",
                )

        with gr.Tab("Text Analysis"):
            with gr.Row():
                with gr.Column():
                    text_input = gr.Textbox(
                        label="Enter Medical Report Text",
                        placeholder="Enter the radiologist's report text here...",
                        lines=10,
                        value=example_report,
                    )
                    text_analyze_btn = gr.Button("Analyze Text", variant="primary")

                with gr.Column():
                    text_output = gr.Textbox(label="Processed Text")
                    text_results = gr.HTML(label="Analysis Results")
                    text_plot = gr.HTML(label="Entity Visualization")

            # Set up example
            gr.Examples(
                examples=[[example_report]],
                inputs=[text_input],
                label="Example Medical Report",
            )

        with gr.Tab("About"):
            gr.Markdown("""

            ## About MediSync

            

            MediSync is an AI-powered healthcare solution that uses multi-modal analysis to provide comprehensive insights from medical images and reports.

            

            ### Key Features

            

            - **X-ray Image Analysis**: Detects abnormalities in chest X-rays using pre-trained vision models

            - **Medical Report Processing**: Extracts key information from patient reports using NLP models

            - **Multi-modal Integration**: Combines insights from both image and text data for more accurate analysis

            

            ### Models Used

            

            - **X-ray Analysis**: facebook/deit-base-patch16-224-medical-cxr

            - **Medical Text Analysis**: medicalai/ClinicalBERT

            

            ### Important Disclaimer

            

            This tool is for educational and research purposes only. It is not intended to provide medical advice or replace professional healthcare. Always consult with qualified healthcare providers for medical decisions.

            """)

        # Set up event handlers
        multi_img_enhance.click(
            app.enhance_image, inputs=multi_img_input, outputs=multi_img_input
        )
        multi_analyze_btn.click(
            app.analyze_multimodal,
            inputs=[multi_img_input, multi_text_input],
            outputs=[multi_results, multi_plot],
        )

        img_enhance.click(app.enhance_image, inputs=img_input, outputs=img_output)
        img_analyze_btn.click(
            app.analyze_image,
            inputs=img_input,
            outputs=[img_output, img_results, img_plot],
        )

        text_analyze_btn.click(
            app.analyze_text,
            inputs=text_input,
            outputs=[text_output, text_results, text_plot],
        )

    # Run the interface
    interface.launch()


if __name__ == "__main__":
    create_interface()