File size: 21,046 Bytes
9b3b253 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 |
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import random
import json
import logging
import gradio as gr
import time
from openai import OpenAI
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# VAE Class for Latent Space Encoding
class VAE(nn.Module):
def __init__(self, input_dim, latent_dim):
super().__init__()
self.encoder = nn.Sequential(
nn.Linear(input_dim, 128),
nn.ReLU(),
nn.Linear(128, latent_dim * 2)
)
self.decoder = nn.Sequential(
nn.Linear(latent_dim, 128),
nn.ReLU(),
nn.Linear(128, input_dim)
)
self.latent_dim = latent_dim
def forward(self, x):
mu_logvar = self.encoder(x)
mu, logvar = torch.chunk(mu_logvar, 2, dim=-1)
z = self.sample_latent(mu, logvar)
recon = self.decoder(z)
return recon, mu, logvar, z
def sample_latent(self, mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return mu + eps * std
def vae_loss(self, recon_x, x, mu, logvar):
recon_loss = nn.MSELoss()(recon_x, x)
kld = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return recon_loss + kld
# FractalNode class for FUCWM with Attention
class FractalNode(nn.Module):
def __init__(self, input_dim, output_dim, depth=0, max_depth=5, max_children=2):
super().__init__()
self.traditional_weight = nn.Linear(input_dim, output_dim)
nn.init.xavier_uniform_(self.traditional_weight.weight)
self.superweight = nn.Parameter(torch.eye(output_dim))
self.norm = nn.LayerNorm(output_dim)
self._children = []
self.is_active = True
self.max_children = max_children
self.complexity_threshold = 0.5
self.depth = depth
self.max_depth = max_depth
self.attention_weights = nn.Parameter(torch.ones(max_children))
def forward(self, x):
if x.dim() == 1:
x = x.unsqueeze(0)
base_output = self.traditional_weight(x)
base_output = self.norm(base_output)
complexity = self.calculate_complexity(base_output)
if complexity > self.complexity_threshold and len(self._children) < self.max_children and self.depth < self.max_depth:
new_child = FractalNode(self.traditional_weight.out_features, self.traditional_weight.out_features,
depth=self.depth+1, max_depth=self.max_depth)
self._children.append(new_child)
self.add_module(f'child_{len(self._children)}', new_child)
modulated_output = torch.matmul(self.superweight, base_output.unsqueeze(-1)).squeeze(-1)
for i, child in enumerate(self._children):
if child.is_active:
child_output = child(modulated_output)
modulated_output = modulated_output + child_output * F.softmax(self.attention_weights, dim=0)[i]
return modulated_output
def calculate_complexity(self, output):
return torch.log(1 + torch.norm(output))
def calculate_relevance(self, child_output):
return torch.sigmoid(torch.sum(child_output * self.superweight))
def update_superweights(self, context):
context_influence = torch.tanh(torch.matmul(self.superweight, context.unsqueeze(-1))).squeeze(-1)
self.superweight.data = self.superweight.data + 0.01 * context_influence
for child in self._children:
if child.is_active:
child.update_superweights(context)
def grow(self, complexity_threshold):
if self.calculate_complexity(self.traditional_weight.weight) > complexity_threshold and len(self._children) < self.max_children and self.depth < self.max_depth:
new_child = FractalNode(self.traditional_weight.out_features, self.traditional_weight.out_features,
depth=self.depth+1, max_depth=self.max_depth)
self._children.append(new_child)
self.add_module(f'child_{len(self._children)}', new_child)
for child in self._children:
child.grow(complexity_threshold)
def update_attention(self, co_activation_vector):
self.attention_weights.data += co_activation_vector[:len(self._children)]
self.attention_weights.data = F.softmax(self.attention_weights, dim=0)
@property
def complexity(self):
return torch.norm(self.superweight)
@property
def children(self):
return self._children
# FUCWM class with Attention
class FUCWM(nn.Module):
def __init__(self, vocab_size, embed_dim, output_dim, max_depth=5):
super().__init__()
self.word_embeddings = nn.Embedding(vocab_size, embed_dim)
self.root = FractalNode(embed_dim, output_dim, max_depth=max_depth)
self.max_depth = max_depth
self.co_activation_matrix = torch.zeros((max_depth, max_depth))
def forward(self, x):
if x.dtype == torch.long:
embedded = self.word_embeddings(x)
if embedded.dim() == 3:
embedded = embedded.mean(dim=1)
else:
embedded = x
output = self.root(embedded)
self.update_co_activations()
return output
def grow(self, complexity_threshold):
self.root.grow(complexity_threshold)
def update_superweights(self, context):
self.root.update_superweights(context)
def manage_padding(self):
def _manage_padding(node, depth):
if depth >= self.max_depth:
node.is_active = False
else:
activation = torch.norm(node.superweight)
if not node.is_active and activation > 0.5:
node.is_active = True
elif node.is_active and activation < 0.1:
node.is_active = False
for child in node.children:
_manage_padding(child, depth + 1)
_manage_padding(self.root, 0)
def update_co_activations(self):
for i in range(self.max_depth):
for j in range(self.max_depth):
if i != j:
self.co_activation_matrix[i][j] += 0.1 * random.random()
self.co_activation_matrix = F.softmax(self.co_activation_matrix, dim=1)
def update_attention_weights(self):
def update_node(node, depth):
node.update_attention(self.co_activation_matrix[depth])
for child in node.children:
update_node(child, depth+1)
update_node(self.root, 0)
class DynamicAI:
def __init__(self, vocab_size=10000, embed_dim=64, latent_dim=64, output_dim=64, max_depth=5):
self.vae = VAE(embed_dim, latent_dim)
self.model = FUCWM(vocab_size, embed_dim, output_dim, max_depth)
self.optimizer = optim.Adam(list(self.vae.parameters()) + list(self.model.parameters()), lr=0.0001)
self.scheduler = optim.lr_scheduler.StepLR(self.optimizer, step_size=5, gamma=0.1)
self.criterion = nn.MSELoss()
self.word_to_index = {}
self.index_to_word = {}
self.next_index = 0
self.lm_studio_client = OpenAI(base_url="http://localhost:1234/v1", api_key="lm-studio")
def tokenize(self, text):
words = text.lower().split()
indices = []
for word in words:
if word not in self.word_to_index:
self.word_to_index[word] = self.next_index
self.index_to_word[self.next_index] = word
self.next_index += 1
indices.append(self.word_to_index[word])
return torch.tensor(indices, dtype=torch.long).unsqueeze(0)
def chat(self, input_text, max_length=20, temperature=0.7):
input_tokens = self.tokenize(input_text)
thinking_process = []
with torch.no_grad():
embedded_q = self.model.word_embeddings(input_tokens)
_, _, _, z_q = self.vae(embedded_q.mean(dim=1))
output, node_info = self.fractal_thinking(z_q)
thinking_process.append(node_info)
response = []
for _ in range(max_length):
output = output / temperature
probs = torch.softmax(output, dim=-1)
next_word_index = torch.multinomial(probs, 1).item()
next_word = self.index_to_word.get(next_word_index, "")
if next_word:
response.append(next_word)
if next_word in ['.', '!', '?']:
break
next_token = self.tokenize(next_word)
_, _, _, next_latent = self.vae(self.model.word_embeddings(next_token).mean(dim=1))
output, node_info = self.fractal_thinking(next_latent)
thinking_process.append(node_info)
else:
break
thinking_str = "\n".join(thinking_process)
response_str = ' '.join(response)
return f"Thinking Process:\n{thinking_str}\n\nResponse: {response_str}"
def fractal_thinking(self, input_vector):
def traverse_node(node, x, depth):
node_info = f"Node depth: {depth}, Complexity: {node.complexity.item():.4f}, Children: {len(node.children)}"
output = node(x)
if depth < node.max_depth:
for child in node.children:
child_output, child_info = traverse_node(child, output, depth + 1)
output = output + child_output * node.calculate_relevance(child_output)
node_info += f"\n{child_info}"
return output, node_info
output, node_info = traverse_node(self.model.root, input_vector, 0)
return output, node_info
def talk_with_lm_studio(self, initial_message, conversation_duration=60, delay=2):
message = initial_message
start_time = time.time()
conversation_log = []
while time.time() - start_time < conversation_duration:
ai_response = self.chat(message)
logger.info(f"DynamicAI:\n{ai_response}")
conversation_log.append(f"DynamicAI:\n{ai_response}")
yield "\n\n".join(conversation_log)
ai_message = ai_response.split("Response: ")[-1].strip()
if not ai_message:
logger.info("DynamicAI generated an empty response. Skipping LM Studio turn.")
conversation_log.append("DynamicAI: [No response generated. Still learning...]")
yield "\n\n".join(conversation_log)
time.sleep(delay)
continue
lm_studio_response = self.send_to_lm_studio(ai_message)
if lm_studio_response:
logger.info(f"LM Studio: {lm_studio_response}")
conversation_log.append(f"LM Studio: {lm_studio_response}")
message = lm_studio_response
yield "\n\n".join(conversation_log)
else:
logger.warning("No response from LM Studio. Ending conversation.")
break
time.sleep(delay)
def send_to_lm_studio(self, message):
if not message.strip():
logger.warning("Attempted to send an empty message to LM Studio. Skipping.")
return None
try:
completion = self.lm_studio_client.chat.completions.create(
model="unsloth/Llama-3.2-3B-Instruct-GGUF",
messages=[
{"role": "system", "content": "You're talking to an experimental fractal AI that is still learning to communicate. If it doesn't respond or sends empty messages, please be patient and continue the conversation."},
{"role": "user", "content": message}
],
temperature=0.7,
)
response = completion.choices[0].message.content
return response
except Exception as e:
logger.error(f"Error sending to LM Studio: {str(e)}")
return None
def train_on_qa_pairs(self, qa_pairs, epochs=10):
if not isinstance(qa_pairs, list) or len(qa_pairs) == 0:
raise ValueError("qa_pairs must be a non-empty list")
logger.info(f"Training on {len(qa_pairs)} Q&A pairs for {epochs} epochs...")
for epoch in range(epochs):
total_loss = 0
errors = 0
random.shuffle(qa_pairs)
for i, (question, answer) in enumerate(qa_pairs):
self.optimizer.zero_grad()
try:
q_tokens = self.tokenize(question)
a_tokens = self.tokenize(answer)
q_embedded = self.model.word_embeddings(q_tokens)
_, _, _, q_latent = self.vae(q_embedded.mean(dim=1))
a_embedded = self.model.word_embeddings(a_tokens)
_, _, _, a_latent = self.vae(a_embedded.mean(dim=1))
q_output = self.model(q_latent)
a_output = self.model(a_latent)
loss = self.criterion(q_output, a_output)
loss.backward()
torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=1.0)
self.optimizer.step()
total_loss += loss.item()
self.model.grow(complexity_threshold=0.5)
self.model.update_superweights(q_output.detach())
self.model.manage_padding()
self.model.update_attention_weights()
if i % 10 == 0:
logger.info(f"Epoch {epoch+1}, Pair {i+1}/{len(qa_pairs)}, Loss: {loss.item():.4f}")
except Exception as e:
logger.error(f"Error processing pair: {question} | {answer}")
logger.error(f"Error details: {str(e)}")
errors += 1
continue
avg_loss = total_loss / (len(qa_pairs) - errors) if len(qa_pairs) > errors else 0
logger.info(f"Epoch {epoch+1}/{epochs}, Average Loss: {avg_loss:.4f}, Errors: {errors}")
self.scheduler.step()
self.save_state(f"model_state_epoch_{epoch+1}.pth")
yield epoch + 1, avg_loss, errors
def save_state(self, filename):
state = {
'model_state': self.model.state_dict(),
'vae_state': self.vae.state_dict(),
'optimizer_state': self.optimizer.state_dict(),
'scheduler_state': self.scheduler.state_dict(),
'word_to_index': self.word_to_index,
'index_to_word': self.index_to_word,
'next_index': self.next_index
}
torch.save(state, filename)
logger.info(f"Model state saved to {filename}")
def load_state(self, filename):
state = torch.load(filename)
self.word_to_index = state['word_to_index']
self.index_to_word = state['index_to_word']
self.next_index = state['next_index']
self.rebuild_model_structure(state['model_state'])
self.model.load_state_dict(state['model_state'])
self.vae.load_state_dict(state['vae_state'])
self.optimizer.load_state_dict(state['optimizer_state'])
self.scheduler.load_state_dict(state['scheduler_state'])
logger.info(f"Model state loaded from {filename}")
def rebuild_model_structure(self, state_dict):
def rebuild_node(node, prefix):
child_indices = set()
for name in state_dict.keys():
if name.startswith(prefix):
parts = name[len(prefix):].split('.')
if parts[0].startswith('child_'):
child_index = int(parts[0].split('_')[1])
child_indices.add(child_index)
for index in sorted(child_indices):
while len(node._children) < index:
new_child = FractalNode(node.traditional_weight.out_features,
node.traditional_weight.out_features,
depth=node.depth+1,
max_depth=node.max_depth)
node._children.append(new_child)
node.add_module(f'child_{len(node._children)}', new_child)
child_prefix = f"{prefix}child_{index}."
rebuild_node(node._children[index-1], child_prefix)
rebuild_node(self.model.root, "root.")
def grow(self, complexity_threshold):
self.model.grow(complexity_threshold)
def update_superweights(self, context):
self.model.update_superweights(context)
def manage_padding(self):
self.model.manage_padding()
# Gradio Interface for DynamicAI
def create_gradio_interface(ai):
def handle_chat(message, temperature):
return ai.chat(message, temperature=float(temperature))
def handle_save(filename):
ai.save_state(filename)
return f"State saved to {filename}"
def handle_load(filename):
ai.load_state(filename)
return f"State loaded from {filename}"
def handle_train_qa(qa_pairs_file, epochs):
try:
with open(qa_pairs_file.name, 'r', encoding='utf-8') as f:
qa_pairs = json.load(f)
output = ["Starting training..."]
for epoch, loss, errors in ai.train_on_qa_pairs(qa_pairs, epochs=int(epochs)):
output.append(f"Epoch {epoch}/{epochs}, Loss: {loss:.4f}, Errors: {errors}")
output.append("Training completed successfully")
return "\n".join(output)
except Exception as e:
return f"Error during training: {str(e)}"
def handle_lm_studio_chat(initial_message, duration, delay):
conversation_log = gr.Textbox()
for log in ai.talk_with_lm_studio(initial_message, conversation_duration=float(duration), delay=float(delay)):
conversation_log = log
yield conversation_log
with gr.Blocks() as interface:
gr.Markdown("# Dynamic AI with Fractal Universe Chocolate Wafer Model and Attention Mechanism")
with gr.Tab("Chat"):
chat_input = gr.Textbox(label="Your message")
temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, label="Temperature")
chat_output = gr.Textbox(label="AI response")
chat_button = gr.Button("Chat")
chat_button.click(handle_chat, inputs=[chat_input, temperature], outputs=chat_output)
with gr.Tab("LM Studio Conversation"):
initial_message = gr.Textbox(label="Initial Message")
duration = gr.Number(label="Conversation Duration (seconds)", value=60)
delay = gr.Number(label="Delay between messages (seconds)", value=2)
conversation_log = gr.Textbox(label="Conversation Log", lines=20)
start_conversation = gr.Button("Start Conversation")
start_conversation.click(handle_lm_studio_chat, inputs=[initial_message, duration, delay], outputs=conversation_log)
with gr.Tab("Train on Q&A"):
qa_file = gr.File(label="Q&A Pairs JSON File")
epochs_input = gr.Number(label="Number of Epochs", value=10)
train_button = gr.Button("Train on Q&A Pairs")
train_output = gr.Textbox(label="Training status")
train_button.click(handle_train_qa, inputs=[qa_file, epochs_input], outputs=train_output)
with gr.Tab("Save/Load State"):
filename_input = gr.Textbox(label="Filename")
save_button = gr.Button("Save State")
load_button = gr.Button("Load State")
state_output = gr.Textbox(label="Operation result")
save_button.click(handle_save, inputs=filename_input, outputs=state_output)
load_button.click(handle_load, inputs=filename_input, outputs=state_output)
return interface
# Main execution
if __name__ == "__main__":
dynamic_ai = DynamicAI(vocab_size=50000, embed_dim=256, latent_dim=256, output_dim=256, max_depth=7)
iface = create_gradio_interface(dynamic_ai)
iface.launch()
|