File size: 21,046 Bytes
9b3b253
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import random
import json
import logging
import gradio as gr
import time
from openai import OpenAI

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# VAE Class for Latent Space Encoding
class VAE(nn.Module):
    def __init__(self, input_dim, latent_dim):
        super().__init__()
        self.encoder = nn.Sequential(
            nn.Linear(input_dim, 128),
            nn.ReLU(),
            nn.Linear(128, latent_dim * 2)
        )
        self.decoder = nn.Sequential(
            nn.Linear(latent_dim, 128),
            nn.ReLU(),
            nn.Linear(128, input_dim)
        )
        self.latent_dim = latent_dim

    def forward(self, x):
        mu_logvar = self.encoder(x)
        mu, logvar = torch.chunk(mu_logvar, 2, dim=-1)
        z = self.sample_latent(mu, logvar)
        recon = self.decoder(z)
        return recon, mu, logvar, z

    def sample_latent(self, mu, logvar):
        std = torch.exp(0.5 * logvar)
        eps = torch.randn_like(std)
        return mu + eps * std

    def vae_loss(self, recon_x, x, mu, logvar):
        recon_loss = nn.MSELoss()(recon_x, x)
        kld = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
        return recon_loss + kld

# FractalNode class for FUCWM with Attention
class FractalNode(nn.Module):
    def __init__(self, input_dim, output_dim, depth=0, max_depth=5, max_children=2):
        super().__init__()
        self.traditional_weight = nn.Linear(input_dim, output_dim)
        nn.init.xavier_uniform_(self.traditional_weight.weight)
        self.superweight = nn.Parameter(torch.eye(output_dim))
        self.norm = nn.LayerNorm(output_dim)
        self._children = []
        self.is_active = True
        self.max_children = max_children
        self.complexity_threshold = 0.5
        self.depth = depth
        self.max_depth = max_depth
        self.attention_weights = nn.Parameter(torch.ones(max_children))

    def forward(self, x):
        if x.dim() == 1:
            x = x.unsqueeze(0)

        base_output = self.traditional_weight(x)
        base_output = self.norm(base_output)
        complexity = self.calculate_complexity(base_output)

        if complexity > self.complexity_threshold and len(self._children) < self.max_children and self.depth < self.max_depth:
            new_child = FractalNode(self.traditional_weight.out_features, self.traditional_weight.out_features, 
                                    depth=self.depth+1, max_depth=self.max_depth)
            self._children.append(new_child)
            self.add_module(f'child_{len(self._children)}', new_child)

        modulated_output = torch.matmul(self.superweight, base_output.unsqueeze(-1)).squeeze(-1)

        for i, child in enumerate(self._children):
            if child.is_active:
                child_output = child(modulated_output)
                modulated_output = modulated_output + child_output * F.softmax(self.attention_weights, dim=0)[i]

        return modulated_output

    def calculate_complexity(self, output):
        return torch.log(1 + torch.norm(output))

    def calculate_relevance(self, child_output):
        return torch.sigmoid(torch.sum(child_output * self.superweight))

    def update_superweights(self, context):
        context_influence = torch.tanh(torch.matmul(self.superweight, context.unsqueeze(-1))).squeeze(-1)
        self.superweight.data = self.superweight.data + 0.01 * context_influence
        for child in self._children:
            if child.is_active:
                child.update_superweights(context)

    def grow(self, complexity_threshold):
        if self.calculate_complexity(self.traditional_weight.weight) > complexity_threshold and len(self._children) < self.max_children and self.depth < self.max_depth:
            new_child = FractalNode(self.traditional_weight.out_features, self.traditional_weight.out_features, 
                                    depth=self.depth+1, max_depth=self.max_depth)
            self._children.append(new_child)
            self.add_module(f'child_{len(self._children)}', new_child)
        for child in self._children:
            child.grow(complexity_threshold)

    def update_attention(self, co_activation_vector):
        self.attention_weights.data += co_activation_vector[:len(self._children)]
        self.attention_weights.data = F.softmax(self.attention_weights, dim=0)

    @property
    def complexity(self):
        return torch.norm(self.superweight)

    @property
    def children(self):
        return self._children

# FUCWM class with Attention
class FUCWM(nn.Module):
    def __init__(self, vocab_size, embed_dim, output_dim, max_depth=5):
        super().__init__()
        self.word_embeddings = nn.Embedding(vocab_size, embed_dim)
        self.root = FractalNode(embed_dim, output_dim, max_depth=max_depth)
        self.max_depth = max_depth
        self.co_activation_matrix = torch.zeros((max_depth, max_depth))

    def forward(self, x):
        if x.dtype == torch.long:
            embedded = self.word_embeddings(x)
            if embedded.dim() == 3:
                embedded = embedded.mean(dim=1)
        else:
            embedded = x
        
        output = self.root(embedded)
        self.update_co_activations()
        return output

    def grow(self, complexity_threshold):
        self.root.grow(complexity_threshold)

    def update_superweights(self, context):
        self.root.update_superweights(context)

    def manage_padding(self):
        def _manage_padding(node, depth):
            if depth >= self.max_depth:
                node.is_active = False
            else:
                activation = torch.norm(node.superweight)
                if not node.is_active and activation > 0.5:
                    node.is_active = True
                elif node.is_active and activation < 0.1:
                    node.is_active = False
            for child in node.children:
                _manage_padding(child, depth + 1)
        _manage_padding(self.root, 0)

    def update_co_activations(self):
        for i in range(self.max_depth):
            for j in range(self.max_depth):
                if i != j:
                    self.co_activation_matrix[i][j] += 0.1 * random.random()
        
        self.co_activation_matrix = F.softmax(self.co_activation_matrix, dim=1)

    def update_attention_weights(self):
        def update_node(node, depth):
            node.update_attention(self.co_activation_matrix[depth])
            for child in node.children:
                update_node(child, depth+1)
        
        update_node(self.root, 0)

class DynamicAI:
    def __init__(self, vocab_size=10000, embed_dim=64, latent_dim=64, output_dim=64, max_depth=5):
        self.vae = VAE(embed_dim, latent_dim)
        self.model = FUCWM(vocab_size, embed_dim, output_dim, max_depth)
        self.optimizer = optim.Adam(list(self.vae.parameters()) + list(self.model.parameters()), lr=0.0001)
        self.scheduler = optim.lr_scheduler.StepLR(self.optimizer, step_size=5, gamma=0.1)
        self.criterion = nn.MSELoss()
        self.word_to_index = {}
        self.index_to_word = {}
        self.next_index = 0
        self.lm_studio_client = OpenAI(base_url="http://localhost:1234/v1", api_key="lm-studio")

    def tokenize(self, text):
        words = text.lower().split()
        indices = []
        for word in words:
            if word not in self.word_to_index:
                self.word_to_index[word] = self.next_index
                self.index_to_word[self.next_index] = word
                self.next_index += 1
            indices.append(self.word_to_index[word])
        return torch.tensor(indices, dtype=torch.long).unsqueeze(0)

    def chat(self, input_text, max_length=20, temperature=0.7):
        input_tokens = self.tokenize(input_text)
        thinking_process = []
        with torch.no_grad():
            embedded_q = self.model.word_embeddings(input_tokens)
            _, _, _, z_q = self.vae(embedded_q.mean(dim=1))
            output, node_info = self.fractal_thinking(z_q)
            thinking_process.append(node_info)

        response = []
        for _ in range(max_length):
            output = output / temperature
            probs = torch.softmax(output, dim=-1)
            next_word_index = torch.multinomial(probs, 1).item()
            next_word = self.index_to_word.get(next_word_index, "")
            if next_word:
                response.append(next_word)
                if next_word in ['.', '!', '?']:
                    break
                next_token = self.tokenize(next_word)
                _, _, _, next_latent = self.vae(self.model.word_embeddings(next_token).mean(dim=1))
                output, node_info = self.fractal_thinking(next_latent)
                thinking_process.append(node_info)
            else:
                break

        thinking_str = "\n".join(thinking_process)
        response_str = ' '.join(response)
        return f"Thinking Process:\n{thinking_str}\n\nResponse: {response_str}"

    def fractal_thinking(self, input_vector):
        def traverse_node(node, x, depth):
            node_info = f"Node depth: {depth}, Complexity: {node.complexity.item():.4f}, Children: {len(node.children)}"
            output = node(x)
            
            if depth < node.max_depth:
                for child in node.children:
                    child_output, child_info = traverse_node(child, output, depth + 1)
                    output = output + child_output * node.calculate_relevance(child_output)
                    node_info += f"\n{child_info}"

            return output, node_info

        output, node_info = traverse_node(self.model.root, input_vector, 0)
        return output, node_info

    def talk_with_lm_studio(self, initial_message, conversation_duration=60, delay=2):
        message = initial_message
        start_time = time.time()
        conversation_log = []

        while time.time() - start_time < conversation_duration:
            ai_response = self.chat(message)
            logger.info(f"DynamicAI:\n{ai_response}")
            conversation_log.append(f"DynamicAI:\n{ai_response}")
            yield "\n\n".join(conversation_log)

            ai_message = ai_response.split("Response: ")[-1].strip()

            if not ai_message:
                logger.info("DynamicAI generated an empty response. Skipping LM Studio turn.")
                conversation_log.append("DynamicAI: [No response generated. Still learning...]")
                yield "\n\n".join(conversation_log)
                time.sleep(delay)
                continue

            lm_studio_response = self.send_to_lm_studio(ai_message)
            if lm_studio_response:
                logger.info(f"LM Studio: {lm_studio_response}")
                conversation_log.append(f"LM Studio: {lm_studio_response}")
                message = lm_studio_response
                yield "\n\n".join(conversation_log)
            else:
                logger.warning("No response from LM Studio. Ending conversation.")
                break
            
            time.sleep(delay)

    def send_to_lm_studio(self, message):
        if not message.strip():
            logger.warning("Attempted to send an empty message to LM Studio. Skipping.")
            return None

        try:
            completion = self.lm_studio_client.chat.completions.create(
                model="unsloth/Llama-3.2-3B-Instruct-GGUF",
                messages=[
                    {"role": "system", "content": "You're talking to an experimental fractal AI that is still learning to communicate. If it doesn't respond or sends empty messages, please be patient and continue the conversation."},
                    {"role": "user", "content": message}
                ],
                temperature=0.7,
            )
            response = completion.choices[0].message.content
            return response
        except Exception as e:
            logger.error(f"Error sending to LM Studio: {str(e)}")
            return None

    def train_on_qa_pairs(self, qa_pairs, epochs=10):
        if not isinstance(qa_pairs, list) or len(qa_pairs) == 0:
            raise ValueError("qa_pairs must be a non-empty list")
        
        logger.info(f"Training on {len(qa_pairs)} Q&A pairs for {epochs} epochs...")
        for epoch in range(epochs):
            total_loss = 0
            errors = 0
            random.shuffle(qa_pairs)
            for i, (question, answer) in enumerate(qa_pairs):
                self.optimizer.zero_grad()
                
                try:
                    q_tokens = self.tokenize(question)
                    a_tokens = self.tokenize(answer)
                    
                    q_embedded = self.model.word_embeddings(q_tokens)
                    _, _, _, q_latent = self.vae(q_embedded.mean(dim=1))
                    
                    a_embedded = self.model.word_embeddings(a_tokens)
                    _, _, _, a_latent = self.vae(a_embedded.mean(dim=1))
                    
                    q_output = self.model(q_latent)
                    a_output = self.model(a_latent)
                    
                    loss = self.criterion(q_output, a_output)
                    loss.backward()

                    torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=1.0)
    
                    self.optimizer.step()
                    
                    total_loss += loss.item()

                    self.model.grow(complexity_threshold=0.5)
                    self.model.update_superweights(q_output.detach())
                    self.model.manage_padding()
                    self.model.update_attention_weights()

                    if i % 10 == 0:
                        logger.info(f"Epoch {epoch+1}, Pair {i+1}/{len(qa_pairs)}, Loss: {loss.item():.4f}")

                except Exception as e:
                    logger.error(f"Error processing pair: {question} | {answer}")
                    logger.error(f"Error details: {str(e)}")
                    errors += 1
                    continue

            avg_loss = total_loss / (len(qa_pairs) - errors) if len(qa_pairs) > errors else 0
            logger.info(f"Epoch {epoch+1}/{epochs}, Average Loss: {avg_loss:.4f}, Errors: {errors}")
            
            self.scheduler.step()
            
            self.save_state(f"model_state_epoch_{epoch+1}.pth")
            
            yield epoch + 1, avg_loss, errors

    def save_state(self, filename):
        state = {
            'model_state': self.model.state_dict(),
            'vae_state': self.vae.state_dict(),
            'optimizer_state': self.optimizer.state_dict(),
            'scheduler_state': self.scheduler.state_dict(),
            'word_to_index': self.word_to_index,
            'index_to_word': self.index_to_word,
            'next_index': self.next_index
        }
        torch.save(state, filename)
        logger.info(f"Model state saved to {filename}")

    def load_state(self, filename):
        state = torch.load(filename)
        self.word_to_index = state['word_to_index']
        self.index_to_word = state['index_to_word']
        self.next_index = state['next_index']
        
        self.rebuild_model_structure(state['model_state'])
        
        self.model.load_state_dict(state['model_state'])
        self.vae.load_state_dict(state['vae_state'])
        self.optimizer.load_state_dict(state['optimizer_state'])
        self.scheduler.load_state_dict(state['scheduler_state'])
        
        logger.info(f"Model state loaded from {filename}")

    def rebuild_model_structure(self, state_dict):
        def rebuild_node(node, prefix):
            child_indices = set()
            for name in state_dict.keys():
                if name.startswith(prefix):
                    parts = name[len(prefix):].split('.')
                    if parts[0].startswith('child_'):
                        child_index = int(parts[0].split('_')[1])
                        child_indices.add(child_index)
            
            for index in sorted(child_indices):
                while len(node._children) < index:
                    new_child = FractalNode(node.traditional_weight.out_features, 
                                            node.traditional_weight.out_features, 
                                            depth=node.depth+1, 
                                            max_depth=node.max_depth)
                    node._children.append(new_child)
                    node.add_module(f'child_{len(node._children)}', new_child)
                
                child_prefix = f"{prefix}child_{index}."
                rebuild_node(node._children[index-1], child_prefix)

        rebuild_node(self.model.root, "root.")

    def grow(self, complexity_threshold):
        self.model.grow(complexity_threshold)

    def update_superweights(self, context):
        self.model.update_superweights(context)

    def manage_padding(self):
        self.model.manage_padding()

# Gradio Interface for DynamicAI
def create_gradio_interface(ai):
    def handle_chat(message, temperature):
        return ai.chat(message, temperature=float(temperature))

    def handle_save(filename):
        ai.save_state(filename)
        return f"State saved to {filename}"

    def handle_load(filename):
        ai.load_state(filename)
        return f"State loaded from {filename}"

    def handle_train_qa(qa_pairs_file, epochs):
        try:
            with open(qa_pairs_file.name, 'r', encoding='utf-8') as f:
                qa_pairs = json.load(f)
            
            output = ["Starting training..."]
            for epoch, loss, errors in ai.train_on_qa_pairs(qa_pairs, epochs=int(epochs)):
                output.append(f"Epoch {epoch}/{epochs}, Loss: {loss:.4f}, Errors: {errors}")
            output.append("Training completed successfully")
            return "\n".join(output)
        except Exception as e:
            return f"Error during training: {str(e)}"

    def handle_lm_studio_chat(initial_message, duration, delay):
        conversation_log = gr.Textbox()
        for log in ai.talk_with_lm_studio(initial_message, conversation_duration=float(duration), delay=float(delay)):
            conversation_log = log
            yield conversation_log

    with gr.Blocks() as interface:
        gr.Markdown("# Dynamic AI with Fractal Universe Chocolate Wafer Model and Attention Mechanism")

        with gr.Tab("Chat"):
            chat_input = gr.Textbox(label="Your message")
            temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, label="Temperature")
            chat_output = gr.Textbox(label="AI response")
            chat_button = gr.Button("Chat")
            chat_button.click(handle_chat, inputs=[chat_input, temperature], outputs=chat_output)

        with gr.Tab("LM Studio Conversation"):
            initial_message = gr.Textbox(label="Initial Message")
            duration = gr.Number(label="Conversation Duration (seconds)", value=60)
            delay = gr.Number(label="Delay between messages (seconds)", value=2)
            conversation_log = gr.Textbox(label="Conversation Log", lines=20)
            start_conversation = gr.Button("Start Conversation")
            start_conversation.click(handle_lm_studio_chat, inputs=[initial_message, duration, delay], outputs=conversation_log)

        with gr.Tab("Train on Q&A"):
            qa_file = gr.File(label="Q&A Pairs JSON File")
            epochs_input = gr.Number(label="Number of Epochs", value=10)
            train_button = gr.Button("Train on Q&A Pairs")
            train_output = gr.Textbox(label="Training status")
            train_button.click(handle_train_qa, inputs=[qa_file, epochs_input], outputs=train_output)

        with gr.Tab("Save/Load State"):
            filename_input = gr.Textbox(label="Filename")
            save_button = gr.Button("Save State")
            load_button = gr.Button("Load State")
            state_output = gr.Textbox(label="Operation result")
            save_button.click(handle_save, inputs=filename_input, outputs=state_output)
            load_button.click(handle_load, inputs=filename_input, outputs=state_output)

    return interface

# Main execution
if __name__ == "__main__":
    dynamic_ai = DynamicAI(vocab_size=50000, embed_dim=256, latent_dim=256, output_dim=256, max_depth=7)
    iface = create_gradio_interface(dynamic_ai)
    iface.launch()