File size: 14,535 Bytes
f1069cc 9e0eee2 f1069cc 9e0eee2 f1069cc 9e0eee2 f1069cc 9e0eee2 f1069cc 9e0eee2 f1069cc 9e0eee2 f1069cc 9e0eee2 f1069cc 9e0eee2 f1069cc 9e0eee2 f1069cc 9e0eee2 f1069cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import matplotlib.pyplot as plt
import json
import yaml
class Fundamental_Music_Embedding(nn.Module):
def __init__(self, d_model, base, if_trainable = False, if_translation_bias_trainable = True, device='cpu', type = "se",emb_nn=None,translation_bias_type = "nd"):
super().__init__()
self.d_model = d_model
self.device = device
self.base = base
self.if_trainable = if_trainable #whether the se is trainable
if translation_bias_type is not None:
self.if_translation_bias = True
self.if_translation_bias_trainable = if_translation_bias_trainable #default the 2d vector is trainable
if translation_bias_type=="2d":
translation_bias = torch.rand((1, 2), dtype = torch.float32) #Returns a tensor filled with random numbers from a uniform distribution on the interval [0, 1)[0,1)
elif translation_bias_type=="nd":
translation_bias = torch.rand((1, self.d_model), dtype = torch.float32)
translation_bias = nn.Parameter(translation_bias, requires_grad=True)
self.register_parameter("translation_bias", translation_bias)
else:
self.if_translation_bias = False
i = torch.arange(d_model)
angle_rates = 1 / torch.pow(self.base, (2 * (i//2)) / d_model)
angle_rates = angle_rates[None, ... ]#.cuda()
if self.if_trainable:
angles = nn.Parameter(angle_rates, requires_grad=True)
self.register_parameter("angles", angles)
else:
self.angles = angle_rates
def __call__(self, inp, device):
if inp.dim()==2:
inp = inp[..., None] #pos (batch, num_pitch, 1)
elif inp.dim()==1:
inp = inp[None, ..., None] #pos (1, num_pitch, 1)
angle_rads = inp*self.angles.to(device) #(batch, num_pitch)*(1,dim)
# apply sin to even indices in the array; 2i
angle_rads[:, :, 0::2] = torch.sin(angle_rads.clone()[:, : , 0::2])
# apply cos to odd indices in the array; 2i+1
angle_rads[:, :, 1::2] = torch.cos(angle_rads.clone()[:, :, 1::2])
pos_encoding = angle_rads.to(torch.float32)
if self.if_translation_bias:
if self.translation_bias.size()[-1]!= self.d_model:
translation_bias = self.translation_bias.repeat(1, 1,int(self.d_model/2))
else:
translation_bias = self.translation_bias
pos_encoding += translation_bias
else:
self.translation_bias = None
return pos_encoding
class Music_PositionalEncoding(nn.Module):
def __init__(self, d_model: int, dropout: float = 0.1, max_len: int = 5000, if_index = True, if_global_timing = True, if_modulo_timing = True, device = 'cuda:0'):
super().__init__()
self.if_index = if_index
self.if_global_timing = if_global_timing
self.if_modulo_timing = if_modulo_timing
self.dropout = nn.Dropout(p=dropout)
self.index_embedding = Fundamental_Music_Embedding(
d_model = d_model, base=10000, if_trainable=False, translation_bias_type = None,
if_translation_bias_trainable = False, type = "se"
)# .cuda()
self.global_time_embedding = Fundamental_Music_Embedding(
d_model = d_model, base=10001, if_trainable=False, translation_bias_type = None,
if_translation_bias_trainable = False, type = "se"
)# .cuda()
self.modulo_time_embedding = Fundamental_Music_Embedding(
d_model = d_model, base=10001, if_trainable=False, translation_bias_type = None,
if_translation_bias_trainable = False, type = "se"
)# .cuda()
position = torch.arange(max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
pe = torch.zeros(max_len, 1, d_model)
pe[:, 0, 0::2] = torch.sin(position * div_term)
pe[:, 0, 1::2] = torch.cos(position * div_term)
self.register_buffer('pe', pe)
'''
if self.if_global_timing:
print("pe add global time")
if self.if_modulo_timing:
print("pe add modulo time")
if self.if_index:
print("pe add idx")
'''
def forward(self, inp,dur_onset_cumsum = None):
if self.if_index:
pe_index = self.pe[:inp.size(1)] #[seq_len, batch_size, embedding_dim]
pe_index = torch.swapaxes(pe_index, 0, 1) #[batch_size, seq_len, embedding_dim]
inp += pe_index
if self.if_global_timing:
global_timing = dur_onset_cumsum
global_timing_embedding = self.global_time_embedding(global_timing)
inp += global_timing_embedding
if self.if_modulo_timing:
modulo_timing = dur_onset_cumsum%4
modulo_timing_embedding = self.modulo_time_embedding(modulo_timing)
inp += modulo_timing_embedding
return self.dropout(inp)
class PositionalEncoding(nn.Module):
def __init__(self, d_model: int, dropout: float = 0.1, max_len: int = 5000):
super().__init__()
self.dropout = nn.Dropout(p=dropout)
position = torch.arange(max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
pe = torch.zeros(max_len, 1, d_model)
pe[:, 0, 0::2] = torch.sin(position * div_term)
pe[:, 0, 1::2] = torch.cos(position * div_term)
self.register_buffer('pe', pe)
def forward(self, x):
pos = self.pe[:x.size(1)] #[seq_len, batch_size, embedding_dim]
pos = torch.swapaxes(pos, 0, 1) #[batch_size, seq_len, embedding_dim]
x = x + pos
return self.dropout(x)
class chord_tokenizer():
def __init__(self,seq_len_chord=88,if_pad = True):
# self.pitch_dict = {'pad': 0, "None":1, "A": 2, "A#": 3, "Bb":3, "B":4, "C":5, "C#":6, "Db":6, "D": 7, "D#":8, "Eb":8, "E": 9 ,"F":10, "F#":11, "Gb":11, "G":12, "G#":13, "Ab":13}
self.pitch_dict = {'pad': 0, "None":1, "N":1, "A": 2, "A#": 3, "Bb":3, "B":4, "Cb": 4, "B#":5, "C":5, "C#":6, "Db":6, "D": 7, "D#":8, "Eb":8, "E": 9 , "Fb": 9, "E#": 10, "F":10, "F#":11, "Gb":11, "G":12, "G#":13, "Ab":13}
self.chord_type_dict = {'pad': 0, "None": 1,"N": 1, "maj": 2, "maj7": 3, "m": 4, "m6": 5, "m7": 6, "m7b5": 7, "6": 8, "7": 9, "aug": 10, "dim":11} #, "/":
self.chord_inversion_dict = {'pad': 0, "None":1, "N":1,"inv": 2, "no_inv":3}
self.seq_len_chord = seq_len_chord
self.if_pad = if_pad
def __call__(self, chord, chord_time):
if len(chord)==0:
chord, chord_time = ["N"], [0.]
if self.if_pad:
pad_len_chord = self.seq_len_chord - len(chord)
chord_mask = [True]*len(chord) +[False]*pad_len_chord
chord += ["pad"]*pad_len_chord
chord_time += [chord_time[-1]]*pad_len_chord
else:
chord_mask = [True]*len(chord)
self.chord_root, self.chord_type, self.chord_inv = self.tokenize_chord_lst(chord)
self.chord_time = chord_time
self.chord_mask = chord_mask
# print("out",self.chord_root, self.chord_type, self.chord_inv, self.chord_time, self.chord_mask)
return self.chord_root, self.chord_type, self.chord_inv, self.chord_time, self.chord_mask
def get_chord_root_type_inversion_timestamp(self, chord):
if chord =="pad":
return "pad", "pad", "pad"
if chord =="N":
return "N", "N", "N"
if len(chord.split('/'))>1:
chord_inv = "inv"
else:
chord_inv = "no_inv"
chord_wo_inv = chord.split('/')[0]
if len(chord_wo_inv)>1: # this part might have a '#' or 'b'
if chord_wo_inv[1]=='#' or chord_wo_inv[1]=='b':
chord_root=chord_wo_inv[0:2]
else:
chord_root=chord_wo_inv[0]
else:
chord_root=chord_wo_inv[0]
if len(chord_wo_inv)>len(chord_root):
chord_type=chord_wo_inv[len(chord_root):]
else:
chord_type='maj'
return chord_root, chord_type, chord_inv
def tokenize_chord_lst(self, chord_lst):
out_root = []
out_type = []
out_inv = []
for chord in chord_lst:
chord_root, chord_type, chord_inversion= self.get_chord_root_type_inversion_timestamp(chord)
out_root.append(self.pitch_dict[chord_root])
out_type.append(self.chord_type_dict[chord_type])
out_inv.append(self.chord_inversion_dict[chord_inversion])
return out_root, out_type, out_inv
class beat_tokenizer():
def __init__(self,seq_len_beat=88,if_pad = True):
self.beat_dict = {'pad': 0, "None":1, 1.: 2, 2.: 3, 3.:4, 4.:5, 5.:6, 6.:7, 7.:8}
self.if_pad = if_pad
self.seq_len_beat = seq_len_beat
def __call__(self, beat_lst):
# beats = [[0.56, 1.1, 1.66, 2.24, 2.8, 3.36, 3.92, 4.48, 5.04, 5.6, 6.16, 6.74, 7.32, 7.9, 8.46, 9.0, 9.58], [3.0, 1.0, 2.0, 3.0, 1.0, 2.0, 3.0, 1.0, 2.0, 3.0, 1.0, 2.0, 3.0, 1.0, 2.0, 3.0, 1.0]]
if self.if_pad:
if len(beat_lst[0])==0:
beat_mask = [False]*self.seq_len_beat
beat_lst = [[0.]*self.seq_len_beat, ["pad"]*self.seq_len_beat]
else:
pad_len_beat = self.seq_len_beat - len(beat_lst[0])
beat_mask = [True]*len(beat_lst[0]) +[False]*pad_len_beat
beat_lst = [beat_lst[0]+[beat_lst[0][-1]]*pad_len_beat, beat_lst[1]+["pad"]*pad_len_beat ]
else:
beat_mask = [True]*len(beat_lst[0])
self.beat = [self.beat_dict[x] for x in beat_lst[1]]
self.beat_timing = beat_lst[0]
return self.beat, self.beat_timing, beat_mask
# class beat_tokenizer_by_frame():
# def __init__(self, frame_resolution = 0.01, max_len = 10):
# def __call__(self, beat_lst):
# def timestamp2frame(,frame_resolution, max_len):
# def frame2timestamp(frame_resolution, man_len)
def l2_norm(a, b):
return torch.linalg.norm(a-b, ord = 2, dim = -1)
def rounding(x):
return x-torch.sin(2.*math.pi*x)/(2.*math.pi)
class Chord_Embedding(nn.Module):
def __init__(self, FME, PE, d_model = 256, d_oh_type = 12, d_oh_inv = 4):
super().__init__()
self.FME = FME
self.PE = PE
self.d_model = d_model
self.d_oh_type = d_oh_type
self.d_oh_inv = d_oh_inv
self.chord_ffn = nn.Linear(d_oh_type + d_oh_inv + d_model + d_model, d_model) #.cuda()
def __call__(self, chord_root, chord_type, chord_inv, chord_timing, device):
#chords: (B, LEN, 4)
#Embed root using FME
#Embed chord type, chord inversion using OH
#Embed timestamps using shared PE
chord_root_emb = self.FME(chord_root, device)
# print(chord_root_emb.size())
# print('this is chord root: ', chord_root)
# print('this is chord type: ', chord_type)
# print('this is chord inv: ', chord_inv)
# chord_root_emb = torch.randn((2,20,1024)).cuda()
# print(chord_root_emb.device)
# chord_root_emb = F.one_hot(chord_type.to(torch.int64), num_classes = self.d_model).to(torch.float32)
chord_type_emb = F.one_hot(chord_type.to(torch.int64), num_classes = self.d_oh_type).to(torch.float32)
chord_inv_emb = F.one_hot(chord_inv.to(torch.int64), num_classes = self.d_oh_inv).to(torch.float32)
chord_time_emb = self.PE.global_time_embedding(chord_timing, device)
chord_emb = self.chord_ffn(torch.cat((chord_root_emb, chord_type_emb, chord_inv_emb, chord_time_emb), dim = -1).to(device))
# print("TADY toje", chord_emb.device)
return chord_emb
class Beat_Embedding(nn.Module):
def __init__(self, PE, d_model = 256, d_oh_beat_type = 4):
super().__init__()
self.PE = PE
self.d_model = d_model
self.d_oh_beat_type = d_oh_beat_type
self.beat_ffn = nn.Linear(d_oh_beat_type+d_model, d_model)
def __call__(self, beats, beats_timing, device):
#Embed beat type using OH
#Embed time using PE
beat_type_emb = F.one_hot(beats.to(torch.int64), num_classes = self.d_oh_beat_type).to(torch.float32).to(device)
beat_time_emb = self.PE.global_time_embedding(beats_timing, device)
merged_beat = torch.cat((beat_type_emb, beat_time_emb), dim = -1)
beat_emb = self.beat_ffn(merged_beat)
return beat_emb
if __name__ == "__main__":
config_path = "/data/nicolas/TANGO/config/model_embedding_config.yaml"
with open (config_path, 'r') as f:
cfg = yaml.safe_load(f)
beats = [[0.56, 1.1, 1.66, 2.24, 2.8, 3.36, 3.92, 4.48, 5.04, 5.6, 6.16, 6.74, 7.32, 7.9, 8.46, 9.0, 9.58], [3.0, 1.0, 2.0, 3.0, 1.0, 2.0, 3.0, 1.0, 2.0, 3.0, 1.0, 2.0, 3.0, 1.0, 2.0, 3.0, 1.0]]
beats = np.array(beats).T.tolist()
chords = [["Gm", 0.464399092], ["Eb", 1.393197278], ["F", 3.157913832], ["Bb", 4.736870748], ["F7", 5.758548752], ["Gm", 6.501587301], ["Eb", 8.173424036], ["F7", 9.938140589]]
chord_tokenizer = chord_tokenizer(seq_len_chord=30,if_pad = True)
beat_tokenizer = beat_tokenizer(seq_len_beat=17,if_pad = True)
#TOKENIZE CHORDS AND BEATS AT DATALOADING PART
chord_tokens, chord_masks = chord_tokenizer(chords)#adding batch dimension
beat_tokens, beat_masks = beat_tokenizer(beats)
chord_tokens, chord_masks, beat_tokens, beat_masks = chord_tokens[None, ...], chord_masks[None, ...], beat_tokens[None, ...], beat_masks[None, ...] #adding batch dimension
print("tokeninzing chords and beats", chord_tokens.shape, beat_tokens.shape)
#EMBEDDING CHORDS AND BEATS WITHIN THE MODEL
FME = Fundamental_Music_Embedding(**cfg["FME_embedding_conf"])
PE = Music_PositionalEncoding(**cfg["Position_encoding_conf"])
chord_embedding_layer = Chord_Embedding(FME, PE, **cfg["Chord_Embedding_conf"])
chord_embedded = chord_embedding_layer(chord_tokens)
beat_embedding_layer = Beat_Embedding(PE, **cfg["Beat_Embedding_conf"])
beat_embedded = beat_embedding_layer(beat_tokens)
print("embedding tokenized chords and beats", chord_embedded.shape, beat_embedded.shape)
|