File size: 22,792 Bytes
b91cd97
14c1dbf
be34a3d
 
 
 
 
 
95eaf4d
 
005776b
be34a3d
 
 
9e7100f
5aadc08
 
 
 
 
be34a3d
5400148
5aadc08
f168dbf
5aadc08
 
 
f168dbf
5aadc08
 
 
 
 
005776b
f168dbf
 
18b4aea
5aadc08
718eae1
 
 
5aadc08
 
89cb60c
 
 
 
18b4aea
 
89cb60c
5aadc08
be34a3d
 
e5e92a0
5aadc08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be34a3d
5aadc08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be34a3d
5aadc08
 
 
 
f50300f
5aadc08
be34a3d
5aadc08
 
be34a3d
 
f50300f
be34a3d
 
5aadc08
 
 
 
 
 
 
 
 
be34a3d
 
 
 
5aadc08
 
 
be34a3d
 
 
5aadc08
f50300f
5aadc08
be34a3d
5aadc08
cc5ce56
5aadc08
 
 
be34a3d
f50300f
5aadc08
 
 
 
005776b
5aadc08
 
005776b
5aadc08
 
 
 
23cbdcd
5aadc08
23cbdcd
 
be34a3d
23cbdcd
 
 
 
005776b
be34a3d
005776b
be34a3d
f50300f
 
 
95eaf4d
d3dabcd
be34a3d
 
fcb62dc
be34a3d
 
 
 
 
 
eab6e9f
be34a3d
 
 
005776b
 
fcb62dc
005776b
 
 
 
 
 
eab6e9f
005776b
be34a3d
005776b
 
be34a3d
 
 
 
 
 
 
 
5aadc08
be34a3d
 
 
 
 
 
 
 
5aadc08
be34a3d
 
 
 
 
 
 
 
 
 
 
 
 
 
eab6e9f
 
 
 
 
 
 
 
 
 
 
 
 
be34a3d
 
 
d3dabcd
be34a3d
 
 
fcb62dc
eab6e9f
 
 
 
 
 
 
 
 
fcb62dc
 
 
 
be34a3d
 
 
 
 
 
eab6e9f
be34a3d
 
005776b
 
be34a3d
5aadc08
be34a3d
 
5aadc08
be34a3d
 
 
5aadc08
be34a3d
5aadc08
005776b
be34a3d
 
 
5aadc08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23ca056
5aadc08
 
 
 
be34a3d
5aadc08
 
 
 
 
 
 
be34a3d
5aadc08
 
 
 
 
 
 
 
 
 
 
f2e4ce4
fcb62dc
 
 
 
 
 
 
 
5aadc08
 
 
8a566c0
 
5aadc08
8a566c0
5aadc08
8a566c0
5aadc08
 
 
 
 
 
 
 
18b4aea
be34a3d
5aadc08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5222e2
 
5aadc08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eab6e9f
 
 
 
5aadc08
 
 
 
 
 
 
 
 
 
89e84e0
5aadc08
 
005776b
5aadc08
8b28d2b
005776b
5aadc08
 
 
23cbdcd
 
 
 
 
 
3d04fb6
be34a3d
 
3d04fb6
23cbdcd
be34a3d
 
 
 
 
 
 
 
 
 
f2e4ce4
be34a3d
 
 
 
3d04fb6
 
 
 
 
 
 
 
 
 
 
 
be34a3d
f2e4ce4
be34a3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23cbdcd
5aadc08
 
89cb60c
5aadc08
 
b87fd1b
005776b
be34a3d
5aadc08
c11232c
5aadc08
 
 
 
 
 
fcb62dc
5aadc08
 
 
 
 
 
eab6e9f
5aadc08
 
005776b
5aadc08
 
005776b
5aadc08
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
import os
import subprocess

subprocess.run(
    "pip install flash-attn --no-build-isolation",
    env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
    shell=True,
)

os.makedirs("/home/user/app/checkpoints", exist_ok=True)
from huggingface_hub import snapshot_download
snapshot_download(
    repo_id="Alpha-VLLM/Lumina-Next-T2I", local_dir="/home/user/app/checkpoints"
)

import argparse
import builtins
import json
import random
import socket

import spaces
import traceback

import fairscale.nn.model_parallel.initialize as fs_init
import gradio as gr
import numpy as np

import torch
import torch.distributed as dist
from torchvision.transforms.functional import to_pil_image

from PIL import Image
from safetensors.torch import load_file

import models
from transport import create_transport, Sampler

print(f"Is CUDA available: {torch.cuda.is_available()}")
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")

description = """
    # Lumina Next Text-to-Image
    
    #### Lumina-Next-T2I is a 2B `Next-DiT` model with `Gemma-2B` text encoder.
    
    #### Demo current model: `Lumina-Next-T2I`

    #### Lumina-Next supports higher-order solvers. <span style='color: orange;'>It can generate images with merely 10 steps without any distillation.
 
"""
hf_token = os.environ["HF_TOKEN"]


class ModelFailure:
    pass


# Adapted from pipelines.StableDiffusionXLPipeline.encode_prompt
def encode_prompt(
    prompt_batch, text_encoder, tokenizer, proportion_empty_prompts, is_train=True
):

    captions = []
    for caption in prompt_batch:
        if random.random() < proportion_empty_prompts:
            captions.append("")
        elif isinstance(caption, str):
            captions.append(caption)
        elif isinstance(caption, (list, np.ndarray)):
            # take a random caption if there are multiple
            captions.append(random.choice(caption) if is_train else caption[0])

    with torch.no_grad():
        text_inputs = tokenizer(
            captions,
            padding=True,
            pad_to_multiple_of=8,
            max_length=256,
            truncation=True,
            return_tensors="pt",
        )

        text_input_ids = text_inputs.input_ids
        prompt_masks = text_inputs.attention_mask

        prompt_embeds = text_encoder(
            input_ids=text_input_ids.cuda(),
            attention_mask=prompt_masks.cuda(),
            output_hidden_states=True,
        ).hidden_states[-2]

    return prompt_embeds, prompt_masks


def load_models(args, master_port, rank):
    # import here to avoid huggingface Tokenizer parallelism warnings
    from diffusers.models import AutoencoderKL
    from transformers import AutoModelForCausalLM, AutoTokenizer

    # override the default print function since the delay can be large for child process
    original_print = builtins.print

    # Redefine the print function with flush=True by default
    def print(*args, **kwargs):
        kwargs.setdefault("flush", True)
        original_print(*args, **kwargs)

    # Override the built-in print with the new version
    builtins.print = print

    train_args = torch.load(os.path.join(args.ckpt, "model_args.pth"))
    print("Loaded model arguments:", json.dumps(train_args.__dict__, indent=2))

    dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[
        args.precision
    ]
    device = "cuda" if torch.cuda.is_available() else "cpu"

    print(f"Creating lm: Gemma-2B")
    text_encoder = (
        AutoModelForCausalLM.from_pretrained(
            "google/gemma-2b",
            torch_dtype=dtype,
            device_map=device,
            # device_map="cuda",
            token=hf_token,
        )
        .get_decoder()
        .eval()
    )
    cap_feat_dim = text_encoder.config.hidden_size
    if args.num_gpus > 1:
        raise NotImplementedError("Inference with >1 GPUs not yet supported")

    tokenizer = AutoTokenizer.from_pretrained(
        "google/gemma-2b",
        add_bos_token=True,
        add_eos_token=True,
        token=hf_token,
    )
    tokenizer.padding_side = "right"

    print(f"Creating vae: sdxl-vae")
    vae = AutoencoderKL.from_pretrained(
        "stabilityai/sdxl-vae",
        torch_dtype=torch.float32,
    ).to(device)

    print(f"Creating DiT: Next-DiT")
    # latent_size = train_args.image_size // 8
    model = models.__dict__["NextDiT_2B_patch2"](
        qk_norm=train_args.qk_norm,
        cap_feat_dim=cap_feat_dim,
    )
    # model.eval().to("cuda", dtype=dtype)
    model.eval().to(device, dtype=dtype)

    assert train_args.model_parallel_size == args.num_gpus
    if args.ema:
        print("Loading ema model.")
    ckpt = load_file(
        os.path.join(
            args.ckpt,
            f"consolidated{'_ema' if args.ema else ''}.{rank:02d}-of-{args.num_gpus:02d}.safetensors",
        ),
    )
    model.load_state_dict(ckpt, strict=True)

    return text_encoder, tokenizer, vae, model


@torch.no_grad()
def infer_ode(args, infer_args, text_encoder, tokenizer, vae, model):
    dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[
        args.precision
    ]
    train_args = torch.load(os.path.join(args.ckpt, "model_args.pth"))
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    torch.cuda.set_device(0)

    # loading model to gpu
    # text_encoder = text_encoder.cuda()
    # vae = vae.cuda()
    # model = model.to("cuda", dtype=dtype)

    with torch.autocast("cuda", dtype):
        (
            cap,
            neg_cap,
            resolution,
            num_sampling_steps,
            cfg_scale,
            solver,
            t_shift,
            seed,
            scale_method,
            proportional_attn,
        ) = infer_args

        metadata = dict(
            cap=cap,
            neg_cap=neg_cap,
            resolution=resolution,
            num_sampling_steps=num_sampling_steps,
            cfg_scale=cfg_scale,
            solver=solver,
            t_shift=t_shift,
            seed=seed,
            ntk_scaling=scale_method,
            proportional_attn=proportional_attn,
        )
        print("> params:", json.dumps(metadata, indent=2))
        
        try:
            # begin sampler
            transport = create_transport(
                args.path_type,
                args.prediction,
                args.loss_weight,
                args.train_eps,
                args.sample_eps,
            )
            sampler = Sampler(transport)
            if args.likelihood:
                # assert args.cfg_scale == 1, "Likelihood is incompatible with guidance"  # todo
                sample_fn = sampler.sample_ode_likelihood(
                    sampling_method=solver,
                    num_steps=num_sampling_steps,
                    atol=args.atol,
                    rtol=args.rtol,
                )
            else:
                sample_fn = sampler.sample_ode(
                    sampling_method=solver,
                    num_steps=num_sampling_steps,
                    atol=args.atol,
                    rtol=args.rtol,
                    reverse=args.reverse,
                    time_shifting_factor=t_shift,
                )
            # end sampler

            resolution = resolution.split(" ")[-1]
            w, h = resolution.split("x")
            w, h = int(w), int(h)

            res_cat = (w * h) ** 0.5
            seq_len = res_cat // 16

            scaling_method = "ntk"
            train_seq_len = 64
            if scaling_method == "ntk":
                scale_factor = seq_len / train_seq_len
            else:
                raise NotImplementedError

            print(f"> scale factor: {scale_factor}")

            latent_w, latent_h = w // 8, h // 8
            if int(seed) != 0:
                torch.random.manual_seed(int(seed))
            z = torch.randn([1, 4, latent_h, latent_w], device="cuda").to(dtype)
            z = z.repeat(2, 1, 1, 1)

            with torch.no_grad():
                if neg_cap != "":
                    cap_feats, cap_mask = encode_prompt(
                        [cap] + [neg_cap],
                        text_encoder,
                        tokenizer,
                        0.0,
                    )
                else:
                    cap_feats, cap_mask = encode_prompt(
                        [cap] + [""],
                        text_encoder,
                        tokenizer,
                        0.0,
                    )
            cap_mask = cap_mask.to(cap_feats.device)

            model_kwargs = dict(
                cap_feats=cap_feats,
                cap_mask=cap_mask,
                cfg_scale=cfg_scale,
                scale_factor=scale_factor,
            )

            print("> start sample")
            samples = sample_fn(z, model.forward_with_cfg, **model_kwargs)[-1]
            samples = samples[:1]

            factor = 0.18215 if train_args.vae != "sdxl" else 0.13025
            print(f"vae factor: {factor}")

            samples = vae.decode(samples / factor).sample
            samples = (samples + 1.0) / 2.0
            samples.clamp_(0.0, 1.0)

            img = to_pil_image(samples[0].float())

            return img, metadata
        except Exception:
            print(traceback.format_exc())
            return ModelFailure()


def none_or_str(value):
    if value == "None":
        return None
    return value


def parse_transport_args(parser):
    group = parser.add_argument_group("Transport arguments")
    group.add_argument(
        "--path-type",
        type=str,
        default="Linear",
        choices=["Linear", "GVP", "VP"],
        help="the type of path for transport: 'Linear', 'GVP' (Geodesic Vector Pursuit), or 'VP' (Vector Pursuit).",
    )
    group.add_argument(
        "--prediction",
        type=str,
        default="velocity",
        choices=["velocity", "score", "noise"],
        help="the prediction model for the transport dynamics.",
    )
    group.add_argument(
        "--loss-weight",
        type=none_or_str,
        default=None,
        choices=[None, "velocity", "likelihood"],
        help="the weighting of different components in the loss function, can be 'velocity' for dynamic modeling, 'likelihood' for statistical consistency, or None for no weighting.",
    )
    group.add_argument(
        "--sample-eps", type=float, help="sampling in the transport model."
    )
    group.add_argument(
        "--train-eps", type=float, help="training to stabilize the learning process."
    )


def parse_ode_args(parser):
    group = parser.add_argument_group("ODE arguments")
    group.add_argument(
        "--atol",
        type=float,
        default=1e-6,
        help="Absolute tolerance for the ODE solver.",
    )
    group.add_argument(
        "--rtol",
        type=float,
        default=1e-3,
        help="Relative tolerance for the ODE solver.",
    )
    group.add_argument(
        "--reverse", action="store_true", help="run the ODE solver in reverse."
    )
    group.add_argument(
        "--likelihood",
        action="store_true",
        help="Enable calculation of likelihood during the ODE solving process.",
    )


def parse_sde_args(parser):
    group = parser.add_argument_group("SDE arguments")
    group.add_argument(
        "--sampling-method",
        type=str,
        default="Euler",
        choices=["Euler", "Heun"],
        help="the numerical method used for sampling the stochastic differential equation: 'Euler' for simplicity or 'Heun' for improved accuracy.",
    )
    group.add_argument(
        "--diffusion-form",
        type=str,
        default="sigma",
        choices=[
            "constant",
            "SBDM",
            "sigma",
            "linear",
            "decreasing",
            "increasing-decreasing",
        ],
        help="form of diffusion coefficient in the SDE",
    )
    group.add_argument(
        "--diffusion-norm",
        type=float,
        default=1.0,
        help="Normalizes the diffusion coefficient, affecting the scale of the stochastic component.",
    )
    group.add_argument(
        "--last-step",
        type=none_or_str,
        default="Mean",
        choices=[None, "Mean", "Tweedie", "Euler"],
        help="form of last step taken in the SDE",
    )
    group.add_argument(
        "--last-step-size", type=float, default=0.04, help="size of the last step taken"
    )


def find_free_port() -> int:
    sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    sock.bind(("", 0))
    port = sock.getsockname()[1]
    sock.close()
    return port


def main():
    parser = argparse.ArgumentParser()
    mode = "ODE"

    parser.add_argument("--num_gpus", type=int, default=1)
    parser.add_argument("--ckpt", type=str, default="/home/user/app/checkpoints")
    parser.add_argument("--ema", type=bool, default=True)
    parser.add_argument("--precision", default="bf16", choices=["bf16", "fp32"])

    parse_transport_args(parser)
    parse_ode_args(parser)
    args = parser.parse_known_args()[0]

    if args.num_gpus != 1:
        raise NotImplementedError("Multi-GPU Inference is not yet supported")

    args.sampler_mode = mode

    text_encoder, tokenizer, vae, model = load_models(args, 60001, 0)

    with gr.Blocks() as demo:
        with gr.Row():
            gr.Markdown(description)
        with gr.Row():
            with gr.Column():
                cap = gr.Textbox(
                    lines=2,
                    label="Caption",
                    interactive=True,
                    value="Miss Mexico portrait of the most beautiful mexican woman, Exquisite detail, 30-megapixel, 4k, 85-mm-lens, sharp-focus, f:8, "
                    "ISO 100, shutter-speed 1:125, diffuse-back-lighting, award-winning photograph, small-catchlight, High-sharpness, facial-symmetry, 8k",
                    placeholder="Enter a caption.",
                )
                neg_cap = gr.Textbox(
                    lines=2,
                    label="Negative Caption",
                    interactive=True,
                    value="",
                    placeholder="Enter a negative caption.",
                )
                with gr.Row():
                    res_choices = ["1024x1024", "512x2048", "2048x512"] + [
                        "(Extrapolation) 2048x1920",
                        "(Extrapolation) 1920x2048",
                        "(Extrapolation) 1664x1664",
                        "(Extrapolation) 1536x2560",
                        "(Extrapolation) 2048x1024",
                        "(Extrapolation) 1024x2048",
                    ]
                    resolution = gr.Dropdown(
                        value=res_choices[0], choices=res_choices, label="Resolution"
                    )
                with gr.Row():
                    num_sampling_steps = gr.Slider(
                        minimum=1,
                        maximum=70,
                        value=10,
                        step=1,
                        interactive=True,
                        label="Sampling steps",
                    )
                    seed = gr.Slider(
                        minimum=0,
                        maximum=int(1e5),
                        value=1,
                        step=1,
                        interactive=True,
                        label="Seed (0 for random)",
                    )
                with gr.Accordion(
                    "Advanced Settings for Resolution Extrapolation", open=False
                ):
                    with gr.Row():
                        solver = gr.Dropdown(
                            value="midpoint",
                            choices=["euler", "midpoint", "rk4"],
                            label="solver",
                        )
                        t_shift = gr.Slider(
                            minimum=1,
                            maximum=20,
                            value=6,
                            step=1,
                            interactive=True,
                            label="Time shift",
                        )
                        cfg_scale = gr.Slider(
                            minimum=1.0,
                            maximum=20.0,
                            value=4.0,
                            interactive=True,
                            label="CFG scale",
                        )
                    with gr.Row():
                        scale_methods = gr.Dropdown(
                            value="ntk",
                            choices=["ntk"],
                            label="Scale methods",
                        )
                        proportional_attn = gr.Checkbox(
                            value=True,
                            interactive=True,
                            label="Proportional attention",
                        )
                with gr.Row():
                    submit_btn = gr.Button("Submit", variant="primary")
            with gr.Column():
                output_img = gr.Image(
                    label="Lumina Generated image",
                    interactive=False,
                    format="png",
                    show_label=False
                )
                with gr.Accordion(label="Generation Parameters", open=True):
                    gr_metadata = gr.JSON(label="metadata", show_label=False)

        with gr.Row():
            gr.Examples(
                [
                    ["👽🤖👹👻"],
                    ["🐔 playing 🏀"],
                    ["☃️ with 🌹 in the ❄️"],
                    ["🐶 wearing 😎  flying on 🌈 "],
                    ["A small 🍎 and 🍊 with 😁 emoji in the Sahara desert"],
                    ["Astronaut on Mars During sunset"],
                    [
                        "A scared cute rabbit in Happy Tree Friends style and punk vibe."
                    ],
                    ["A humanoid eagle soldier of the First World War."],  # noqa
                    [
                        "A cute Christmas mockup on an old wooden industrial desk table with Christmas decorations and bokeh lights in the background."
                    ],
                    [
                        "A front view of a romantic flower shop in France filled with various blooming flowers including lavenders and roses."
                    ],
                    [
                        "An old man, portrayed as a retro superhero, stands in the streets of New York City at night"
                    ],
                    [
                        "many trees are surrounded by a lake in autumn colors, in the style of nature-inspired imagery, havencore, brightly colored, dark white and dark orange, bright primary colors, environmental activism, forestpunk"
                    ],
                    [
                        "A fluffy mouse holding a watermelon, in a magical and colorful setting, illustrated in the style of Hayao Miyazaki anime by Studio Ghibli."
                    ],
                    ["孤舟蓑笠翁"],
                    ["两只黄鹂鸣翠柳"],
                    ["大漠孤烟直,长河落日圆"],
                    ["秋风起兮白云飞,草木黄落兮雁南归"],
                    ["味噌ラーメン, 最高品質の浮世絵、江戸時代。"],
                    ["東京タワー、最高品質の浮世絵、江戸時代。"],
                    ["도쿄 타워, 최고 품질의 우키요에, 에도 시대"],
                    [
                        "Tour de Tokyo, estampes ukiyo-e de la plus haute qualité, période Edo"
                    ],
                    ["Токийская башня, лучшие укиё-э, период Эдо"],
                    ["Tokio-Turm, hochwertigste Ukiyo-e, Edo-Zeit"],
                    [
                        "Inka warrior with a war make up, medium shot, natural light, Award winning wildlife photography, hyperrealistic, 8k resolution"
                    ],
                    [
                        "Character of lion in style of saiyan, mafia, gangsta, citylights background, Hyper detailed, hyper realistic, unreal engine ue5, cgi 3d, cinematic shot, 8k"
                    ],
                    [
                        "In the sky above, a giant, whimsical cloud shaped like the 😊 emoji casts a soft, golden light over the scene"
                    ],
                    [
                        "Cyberpunk eagle, neon ambiance, abstract black oil, gear mecha, detailed acrylic, grunge, intricate complexity, rendered in unreal engine 5, photorealistic, 8k"
                    ],
                    [
                        "close-up photo of a beautiful red rose breaking through a cube made of ice , splintered cracked ice surface, frosted colors, blood dripping from rose, melting ice, Valentine’s Day vibes, cinematic, sharp focus, intricate, cinematic, dramatic light"
                    ],
                    [
                        "3D cartoon Fox Head with Human Body, Wearing Iridescent Holographic Liquid Texture & Translucent Material Sun Protective Shirt, Boss Feel, Nike or Addidas Sun Protective Shirt, WitchPunk, Y2K Style, Green and blue, Blue, Metallic Feel, Strong Reflection, plain background, no background, pure single color background, Digital Fashion, Surreal Futurism, Supreme Kong NFT Artwork Style, disney style, headshot photography for portrait studio shoot, fashion editorial aesthetic, high resolution in the style of HAPE PRIME NFT, NFT 3D IP Feel, Bored Ape Yacht Club NFT project Feel, high detail, fine luster, 3D render, oc render, best quality, 8K, bright, front lighting, Face Shot, fine luster, ultra detailed"
                    ],
                ],
                [cap],
                label="Examples",
                examples_per_page=22,
            )

        @spaces.GPU(duration=200)
        def on_submit(*infer_args, progress=gr.Progress(track_tqdm=True),):
            result = infer_ode(args, infer_args, text_encoder, tokenizer, vae, model)
            if isinstance(result, ModelFailure):
                raise RuntimeError("Model failed to generate the image.")
            return result

        submit_btn.click(
            on_submit,
            [
                cap,
                neg_cap,
                resolution,
                num_sampling_steps,
                cfg_scale,
                solver,
                t_shift,
                seed,
                scale_methods,
                proportional_attn,
            ],
            [output_img, gr_metadata],
        )

    demo.queue().launch()


if __name__ == "__main__":
    main()