File size: 5,989 Bytes
e7eee8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import gradio as gr
import torch
import copy
import time
import requests
import io
import numpy as np
import re
from einops import rearrange

import ipdb

from PIL import Image

from vilt.config import ex
from vilt.modules import ViLTransformerSS

from vilt.modules.objectives import cost_matrix_cosine, ipot
from vilt.transforms import pixelbert_transform
from vilt.datamodules.datamodule_base import get_pretrained_tokenizer


@ex.automain
def main(_config):
    _config = copy.deepcopy(_config)

    loss_names = {
        "itm": 1,
        "mlm": 0.5,
        "mpp": 0,
        "vqa": 0,
        "imgcls": 0,
        "nlvr2": 0,
        "irtr": 1,
        "arc": 0,
    }
    tokenizer = get_pretrained_tokenizer(_config["tokenizer"])

    _config.update(
        {
            "loss_names": loss_names,
        }
    )

    model = ViLTransformerSS(_config)
    model.setup("test")
    model.eval()

    device = "cuda:0" if _config["num_gpus"] > 0 else "cpu"
    model.to(device)
    lst_imgs = [f"C:\\Users\\alimh\\PycharmProjects\\ViLT\\assets\\database\\{i}.jpg" for i in range(1,10)]


    def infer( mp_text, hidx =0 ):
        def get_image(path):
            image = Image.open(path).convert("RGB")
            img = pixelbert_transform(size=384)(image)
            return img.unsqueeze(0).to(device)

        imgs = [get_image(pth) for pth in lst_imgs]

        batch = []
        for img in imgs:
            batch.append({"text": [mp_text], "image": [img]})

        for dic in batch:
            encoded = tokenizer(dic["text"])

            dic["text_ids"] = torch.tensor(encoded["input_ids"]).to(device)
            dic["text_labels"] = torch.tensor(encoded["input_ids"]).to(device)
            dic["text_masks"] = torch.tensor(encoded["attention_mask"]).to(device)

        scores = []
        with torch.no_grad():

            for dic in batch:
                s = time.time()
                infer = model(dic)

                e = time.time()
                print("time ", round(e - s, 2))

                score = model.rank_output(infer["cls_feats"])
                scores.append(score.item())
            print(scores)
            img_idx =np.argmax(scores)
            print(np.argmax(scores) + 1 )
            selected_image =  Image.open(lst_imgs[img_idx]).convert("RGB")
            selected_image = np.asarray(selected_image)
            print(selected_image.shape)
            selected_token =""
            if hidx > 0 and hidx < len(encoded["input_ids"][0][:-1]):
                image = Image.open(lst_imgs[img_idx]).convert("RGB")
                selected_batch  = batch[img_idx]
                with torch.no_grad():
                    infer = model(selected_batch)
                    txt_emb, img_emb = infer["text_feats"], infer["image_feats"]
                    txt_mask, img_mask = (
                        infer["text_masks"].bool(),
                        infer["image_masks"].bool(),
                    )
                    for i, _len in enumerate(txt_mask.sum(dim=1)):
                        txt_mask[i, _len - 1] = False
                    txt_mask[:, 0] = False
                    img_mask[:, 0] = False
                    txt_pad, img_pad = ~txt_mask, ~img_mask

                    cost = cost_matrix_cosine(txt_emb.float(), img_emb.float())
                    joint_pad = txt_pad.unsqueeze(-1) | img_pad.unsqueeze(-2)
                    cost.masked_fill_(joint_pad, 0)

                    txt_len = (txt_pad.size(1) - txt_pad.sum(dim=1, keepdim=False)).to(
                        dtype=cost.dtype
                    )
                    img_len = (img_pad.size(1) - img_pad.sum(dim=1, keepdim=False)).to(
                        dtype=cost.dtype
                    )
                    T = ipot(
                        cost.detach(),
                        txt_len,
                        txt_pad,
                        img_len,
                        img_pad,
                        joint_pad,
                        0.1,
                        1000,
                        1,
                    )

                    plan = T[0]
                    plan_single = plan * len(txt_emb)
                    cost_ = plan_single.t()

                    cost_ = cost_[hidx][1:].cpu()

                    patch_index, (H, W) = infer["patch_index"]
                    heatmap = torch.zeros(H, W)
                    for i, pidx in enumerate(patch_index[0]):
                        h, w = pidx[0].item(), pidx[1].item()
                        heatmap[h, w] = cost_[i]

                    heatmap = (heatmap - heatmap.mean()) / heatmap.std()
                    heatmap = np.clip(heatmap, 1.0, 3.0)
                    heatmap = (heatmap - heatmap.min()) / (heatmap.max() - heatmap.min())

                    _w, _h = image.size
                    overlay = Image.fromarray(np.uint8(heatmap * 255), "L").resize(
                        (_w, _h), resample=Image.NEAREST
                    )
                    image_rgba = image.copy()
                    image_rgba.putalpha(overlay)
                    selected_image =  image_rgba

                    selected_token = tokenizer.convert_ids_to_tokens(
                        encoded["input_ids"][0][hidx]
                    )


        return [selected_image,hidx]

    imgs = [Image.open(pth).convert("RGB") for pth in lst_imgs]
    inputs = [

        gr.inputs.Textbox(label="Caption with [MASK] tokens to be filled.", lines=5),
        gr.inputs.Slider(
            minimum=0,
            maximum=38,
            step=1,
            label="Index of token for heatmap visualization (ignored if zero)",
        ),
    ]
    outputs = [
        gr.outputs.Image(label="Image"),


        gr.outputs.Textbox(label="matching index "),
    ]


    interface = gr.Interface(
        fn=infer,
        inputs=inputs,
        outputs=outputs,
        server_name="localhost",
        server_port=8888,

    )

    interface.launch(debug=True,share=False)