Spaces:
Sleeping
Sleeping
File size: 23,379 Bytes
ef5d30c c9d9111 ef5d30c c9d9111 64031ab c9d9111 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 |
import numpy as np
import io
import os
import logging
import collections
import tempfile
from langchain.document_loaders import UnstructuredFileLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.document_loaders import PDFMinerPDFasHTMLLoader
from bs4 import BeautifulSoup
import re
from langchain.docstore.document import Document
import unstructured
from unstructured.partition.docx import partition_docx
from unstructured.partition.auto import partition
from transformers import AutoTokenizer
import pandas as pd
MODEL = "thenlper/gte-base"
CHUNK_SIZE = 1000
CHUNK_OVERLAP = 200
embeddings = HuggingFaceEmbeddings(
model_name=MODEL,
cache_folder=os.getenv("SENTENCE_TRANSFORMERS_HOME")
)
model_id = "mistralai/Mistral-7B-Instruct-v0.1"
tokenizer = AutoTokenizer.from_pretrained(
model_id,
padding_side="left"
)
text_splitter = CharacterTextSplitter(
separator = "\n",
chunk_size = CHUNK_SIZE,
chunk_overlap = CHUNK_OVERLAP,
length_function = len,
)
## PDF Functions
def group_text_by_font_size(content):
cur_fs = []
cur_text = ''
cur_page = -1
cur_c = content[0]
multi_fs = False
snippets = [] # first collect all snippets that have the same font size
for c in content:
# print(f"c={c}\n\n")
if c.find('a') != None and c.find('a').get('name'):
cur_page = int(c.find('a').get('name'))
sp_list = c.find_all('span')
if not sp_list:
continue
for sp in sp_list:
# print(f"sp={sp}\n\n")
if not sp:
continue
st = sp.get('style')
if not st:
continue
fs = re.findall('font-size:(\d+)px',st)
# print(f"fs={fs}\n\n")
if not fs:
continue
fs = [int(fs[0])]
if len(cur_fs)==0:
cur_fs = fs
if fs == cur_fs:
cur_text += sp.text
elif not sp.find('br') and cur_c==c:
cur_text += sp.text
cur_fs.extend(fs)
multi_fs = True
elif sp.find('br') and multi_fs == True: # if a br tag is found and the text is in a different fs, it is the last part of the multifontsize line
cur_fs.extend(fs)
snippets.append((cur_text+sp.text,max(cur_fs), cur_page))
cur_fs = []
cur_text = ''
cur_c = c
multi_fs = False
else:
snippets.append((cur_text,max(cur_fs), cur_page))
cur_fs = fs
cur_text = sp.text
cur_c = c
multi_fs = False
snippets.append((cur_text,max(cur_fs), cur_page))
return snippets
def get_titles_fs(fs_list):
filtered_fs_list = [item[0] for item in fs_list if item[0] > fs_list[0][0]]
return sorted(filtered_fs_list, reverse=True)
def calculate_total_characters(snippets):
font_sizes = {} #dictionary to store font-size and total characters
for text, font_size, _ in snippets:
#remove newline# and digits
cleaned_text = text.replace('\n', '')
#cleaned_text = re.sub(r'\d+', '', cleaned_text)
total_characters = len(cleaned_text)
#update the dictionary
if font_size in font_sizes:
font_sizes[font_size] += total_characters
else:
font_sizes[font_size] = total_characters
#convert the dictionary into a sorted list of tuples
size_charac_list = sorted(font_sizes.items(), key=lambda x: x[1], reverse=True)
return size_charac_list
def create_documents(source, snippets, font_sizes):
docs = []
titles_fs = get_titles_fs(font_sizes)
for snippet in snippets:
cur_fs = snippet[1]
if cur_fs>font_sizes[0][0] and len(snippet[0])>2:
content = min((titles_fs.index(cur_fs)+1), 3)*"#" + " " + snippet[0].replace(" ", " ")
category = "Title"
else:
content = snippet[0].replace(" ", " ")
category = "Paragraph"
metadata={"source":source, "filename":source.split("/")[-1], "file_directory": "/".join(source.split("/")[:-1]), "file_category":"", "file_sub-cat":"", "file_sub2-cat":"", "category":category, "filetype":source.split(".")[-1], "page_number":snippet[2]}
categories = source.split("/")
cat_update=""
if len(categories)>4:
cat_update = {"file_category":categories[1], "file_sub-cat":categories[2], "file_sub2-cat":categories[3]}
elif len(categories)>3:
cat_update = {"file_category":categories[1], "file_sub-cat":categories[2]}
elif len(categories)>2:
cat_update = {"file_category":categories[1]}
metadata.update(cat_update)
docs.append(Document(page_content=content, metadata=metadata))
return docs
## Group Chunks docx or pdf
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE
def group_chunks_by_section(chunks, min_chunk_size=512):
filtered_chunks = [chunk for chunk in chunks if chunk.metadata['category'] != 'PageBreak']# Add more filters if needed
#print(f"filtered = {len(filtered_chunks)} - before = {len(chunks)}")
new_chunks = []
seen_paragraph = False
new_title = True #switches when there is a new paragraph to create a new chunk
for i, chunk in enumerate(filtered_chunks):
# print(f"\n\n\n#{i}:METADATA: {chunk.metadata['category']}")
if new_title:
#print(f"<-- NEW title DETECTED -->")
new_chunk = chunk
new_title = False
add_content = False
new_chunk.metadata['titles'] = ""
#print(f"CONTENT: {new_chunk.page_content}\nMETADATA: {new_chunk.metadata['category']} \n title: {new_chunk.metadata['title']}")
if chunk.metadata['category'].lower() =='title':
new_chunk.metadata['titles'] += f"{chunk.page_content} ~~ "
else:
#Activates when a paragraph is seen after one or more titles
seen_paragraph = True
#Avoid adding the title 2 times to the page content
if add_content:#and chunk.page_content not in new_chunk.page_content
new_chunk.page_content += f"\n{chunk.page_content}"
#edit the end_page number, the last one keeps its place
try:
new_chunk.metadata['end_page'] = chunk.metadata['page_number']
except:
print("", end="")
#print("Exception: No page number in metadata")
add_content = True
#If filtered_chunks[i+1] raises an error, this is probably because this is the last chunk
try:
#If the next chunk is a title and we have already seen a paragraph and the current chunk content is long enough, we create a new document
if filtered_chunks[i+1].metadata['category'].lower() =="title" and seen_paragraph and len(new_chunk.page_content)>min_chunk_size:
if 'category' in new_chunk.metadata:
new_chunk.metadata.pop('category')
new_chunks.append(new_chunk)
new_title = True
seen_paragraph = False
#index out of range
except:
new_chunks.append(new_chunk)
#print('🆘 Gone through all chunks 🆘')
break
return new_chunks
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE
## Split documents by font
def split_pdf(file_path, folder):
loader = PDFMinerPDFasHTMLLoader(file_path)
data = loader.load()[0] # entire pdf is loaded as a single Document
soup = BeautifulSoup(data.page_content,'html.parser')
content = soup.find_all('div')#List of all elements in div tags
try:
snippets = group_text_by_font_size(content)
except Exception as e:
print("ERROR WHILE GROUPING BY FONT SIZE", e)
snippets = [("ERROR WHILE GROUPING BY FONT SIZE", 0, -1)]
font_sizes = calculate_total_characters(snippets)#get the amount of characters for each font_size
chunks = create_documents(file_path, snippets, font_sizes)
return chunks
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE
def split_docx(file_path, folder):
chunks_elms = partition_docx(filename=file_path)
chunks = []
file_categories = file_path.split("/")
for chunk_elm in chunks_elms:
category = chunk_elm.category
if category == "Title":
chunk = Document(page_content= min(chunk_elm.metadata.to_dict()['category_depth']+1, 3)*"#" + ' ' + chunk_elm.text, metadata=chunk_elm.metadata.to_dict())
else:
chunk = Document(page_content=chunk_elm.text, metadata=chunk_elm.metadata.to_dict())
metadata={"source":file_path, "filename":file_path.split("/")[-1], "file_category":"", "file_sub-cat":"", "file_sub2-cat":"", "category":category, "filetype":file_path.split(".")[-1]}
cat_update=""
if len(file_categories)>4:
cat_update = {"file_category":file_categories[1], "file_sub-cat":file_categories[2], "file_sub2-cat":file_categories[3]}
elif len(file_categories)>3:
cat_update = {"file_category":file_categories[1], "file_sub-cat":file_categories[2]}
elif len(file_categories)>2:
cat_update = {"file_category":file_categories[1]}
metadata.update(cat_update)
chunk.metadata.update(metadata)
chunks.append(chunk)
return chunks
# Load the index of documents (if it has already been built)
def rebuild_index(input_folder, output_folder):
paths_time = []
to_keep = set()
print(f'number of files {len(paths_time)}')
if len(output_folder.list_paths_in_partition()) > 0:
with tempfile.TemporaryDirectory() as temp_dir:
for f in output_folder.list_paths_in_partition():
with output_folder.get_download_stream(f) as stream:
with open(os.path.join(temp_dir, os.path.basename(f)), "wb") as f2:
f2.write(stream.read())
index = FAISS.load_local(temp_dir, embeddings)
to_remove = []
logging.info(f"{len(index.docstore._dict)} vectors loaded")
for idx, doc in index.docstore._dict.items():
source = (doc.metadata["source"], doc.metadata["last_modified"])
if source in paths_time:
# Identify documents already indexed and still present in the source folder
to_keep.add(source)
else:
# Identify documents removed from the source folder
to_remove.append(idx)
docstore_id_to_index = {v: k for k, v in index.index_to_docstore_id.items()}
# Remove documents that have been deleted from the source folder
vectors_to_remove = []
for idx in to_remove:
del index.docstore._dict[idx]
ind = docstore_id_to_index[idx]
del index.index_to_docstore_id[ind]
vectors_to_remove.append(ind)
index.index.remove_ids(np.array(vectors_to_remove, dtype=np.int64))
index.index_to_docstore_id = {
i: ind
for i, ind in enumerate(index.index_to_docstore_id.values())
}
logging.info(f"{len(to_remove)} vectors removed")
else:
index = None
to_add = [path[0] for path in paths_time if path not in to_keep]
print(f'to_keep: {to_keep}')
print(f'to_add: {to_add}')
return index, to_add
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE
def split_chunks_by_tokens(documents, max_length=170, overlap=10):
# Create an empty list to store the resized documents
resized = []
# Iterate through the original documents list
for doc in documents:
encoded = tokenizer.encode(doc.page_content)
if len(encoded) > max_length:
remaining_encoded = tokenizer.encode(doc.page_content)
while len(remaining_encoded) > 0:
split_doc = Document(page_content=tokenizer.decode(remaining_encoded[:max(10, max_length)]), metadata=doc.metadata.copy())
resized.append(split_doc)
remaining_encoded = remaining_encoded[max(10, max_length - overlap):]
else:
resized.append(doc)
print(f"Number of chunks before resplitting: {len(documents)} \nAfter splitting: {len(resized)}")
return resized
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE
def split_chunks_by_tokens_period(documents, max_length=170, overlap=10, min_chunk_size=20):
# Create an empty list to store the resized documents
resized = []
previous_file=""
# Iterate through the original documents list
for doc in documents:
current_file = doc.metadata['source']
if current_file != previous_file: #chunk counting
previous_file = current_file
chunk_counter = 0
is_first_chunk = True # Keep track of the first chunk in the document
encoded = tokenizer.encode(doc.page_content)#encode the current document
if len(encoded) > max_length:
remaining_encoded = encoded
is_last_chunk = False
while len(remaining_encoded) > 1 and not is_last_chunk:
# Check for a period in the first 'overlap' tokens
overlap_text = tokenizer.decode(remaining_encoded[:overlap])# Index by token
period_index_b = overlap_text.find('.')# Index by character
if len(remaining_encoded)>max_length + min_chunk_size:
current_encoded = remaining_encoded[:max(10, max_length)]
else:
current_encoded = remaining_encoded[:max(10, max_length + min_chunk_size)] #if the last chunk is to small, concatenate it with the previous one
is_last_chunk = True
period_index_e = len(doc.page_content) # an amount of character that I am sure will be greater or equal to the max lengh of a chunk, could have done len(tokenizer.decode(current_encoded))
if len(remaining_encoded)>max_length+min_chunk_size:# If it is not the last sub chunk
overlap_text_last = tokenizer.decode(current_encoded[-overlap:])
period_index_last = overlap_text_last.find('.')
if period_index_last != -1 and period_index_last < len(overlap_text_last) - 1:
#print(f"period index last found at {period_index_last}")
period_index_e = period_index_last - len(overlap_text_last) + 1
#print(f"period_index_e :{period_index_e}")
#print(f"last :{overlap_text_last}")
if not is_first_chunk:#starting after the period in overlap
if period_index_b == -1:# Period not found in overlap
#print(". not found in overlap")
split_doc = Document(page_content=tokenizer.decode(current_encoded)[:period_index_e], metadata=doc.metadata.copy()) # Keep regular splitting
else:
if is_last_chunk : #not the first but the last
split_doc = Document(page_content=tokenizer.decode(current_encoded)[period_index_b+1:], metadata=doc.metadata.copy())
#print("Should start after \".\"")
else:
split_doc = Document(page_content=tokenizer.decode(current_encoded)[period_index_b+1:period_index_e], metadata=doc.metadata.copy()) # Split at the begining and the end
else:#first chunk
split_doc = Document(page_content=tokenizer.decode(current_encoded)[:period_index_e], metadata=doc.metadata.copy()) # split only at the end if its first chunk
if 'titles' in split_doc.metadata:
chunk_counter += 1
split_doc.metadata['chunk_id'] = chunk_counter
#A1 We could round chunk length in token if we ignore the '.' position in the overlap and save time of computation
split_doc.metadata['token_length'] = len(tokenizer.encode(split_doc.page_content))
resized.append(split_doc)
remaining_encoded = remaining_encoded[max(10, max_length - overlap):]
is_first_chunk = False
#print(len(tokenizer.encode(split_doc.page_content)), split_doc.page_content, "\n-----------------")
elif len(encoded)>min_chunk_size:#ignore the chunks that are too small
#print(f"◀Document:{{ {doc.page_content} }} was not added because to short▶")
if 'titles' in doc.metadata:#check if it was splitted by or split_docx
chunk_counter += 1
doc.metadata['chunk_id'] = chunk_counter
doc.metadata['token_length'] = len(encoded)
resized.append(doc)
print(f"Number of chunks before resplitting: {len(documents)} \nAfter splitting: {len(resized)}")
return resized
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE
def split_doc_in_chunks(input_folder):
docs = []
for i, filename in enumerate(input_folder):
path = filename#os.path.join(input_folder, filename)
print(f"Treating file {i}/{len(input_folder)}")
# Select the appropriate document loader
chunks=[]
if path.endswith(".pdf"):
try:
print("Treatment of pdf file", path)
raw_chuncks = split_pdf(path, input_folder)
chunks = group_chunks_by_section(raw_chuncks)
print(f"Document splitted in {len(chunks)} chunks")
# for chunk in chunks:
# print(f"\n\n____\n\n\nPDF CONTENT: \n{chunk.page_content}\ntitle: {chunk.metadata['title']}\nFile Name: {chunk.metadata['filename']}\n\n")
except Exception as e:
print("Error while splitting the pdf file: ", e)
elif path.endswith(".docx"):
try:
print ("Treatment of docx file", path)
raw_chuncks = split_docx(path, input_folder)
#print(f"RAW :\n***\n{raw_chuncks}")
chunks = group_chunks_by_section(raw_chuncks)
print(f"Document splitted in {len(chunks)} chunks")
#if "cards-Jan 2022-SP.docx" in path:
#for chunk in chunks:
#print(f"\n\n____\n\n\nDOCX CONTENT: \n{chunk.page_content}\ntitle: {chunk.metadata['title']}\nFile Name: {chunk.metadata['filename']}\n\n")
except Exception as e:
print("Error while splitting the docx file: ", e)
elif path.endswith(".doc"):
try:
loader = UnstructuredFileLoader(path)
# Load the documents and split them in chunks
chunks = loader.load_and_split(text_splitter=text_splitter)
counter, counter2 = collections.Counter(), collections.Counter()
filename = os.path.basename(path)
# Define a unique id for each chunk
for chunk in chunks:
chunk.metadata["filename"] = filename.split("/")[-1]
chunk.metadata["file_directory"] = filename.split("/")[:-1]
chunk.metadata["filetype"] = filename.split(".")[-1]
if "page" in chunk.metadata:
counter[chunk.metadata['page']] += 1
for i in range(len(chunks)):
counter2[chunks[i].metadata['page']] += 1
chunks[i].metadata['source'] = filename
else:
if len(chunks) == 1:
chunks[0].metadata['source'] = filename
#The file type is not supported (e.g. .xlsx)
except Exception as e:
print(f"An error occurred: {e}")
try:
if len(chunks)>0:
docs += chunks
except NameError as e:
print(f"An error has occured: {e}")
return docs
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE
def resplit_by_end_of_sentence(docs):
print("❌❌\nResplitting docs by end of sentence\n❌❌")
resized_docs = split_chunks_by_tokens_period(docs, max_length=200, overlap=40, min_chunk_size=20)
try:
# add chunk title to all resplitted chunks #todo move this to split_chunks_by_tokens_period(inject_title = True) with a boolean parameter
cur_source = ""
cpt_chunk = 1
for resized_doc in resized_docs:
try:
title = resized_doc.metadata['titles'].split(' ~~ ')[-2] #Getting the last title of the chunk and adding it to the content if it is not the case
if title not in resized_doc.page_content:
resized_doc.page_content = title + "\n" + resized_doc.page_content
if cur_source == resized_doc.metadata["source"]:
resized_doc.metadata['chunk_number'] = cpt_chunk
else:
cpt_chunk = 1
cur_source = resized_doc.metadata["source"]
resized_doc.metadata['chunk_number'] = cpt_chunk
except Exception as e:#either the title was notfound or title absent in metadata
print("An error occured: ", e)
#print(f"METADATA:\n{resized_doc.metadata}")
cpt_chunk += 1
except Exception as e:
print('AN ERROR OCCURRED: ', e)
return resized_docs
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE
def build_index(docs, index, output_folder):
if len(docs) > 0:
if index is not None:
# Compute the embedding of each chunk and index these chunks
new_index = FAISS.from_documents(docs, embeddings)
index.merge_from(new_index)
else:
index = FAISS.from_documents(docs, embeddings)
with tempfile.TemporaryDirectory() as temp_dir:
index.save_local(temp_dir)
for f in os.listdir(temp_dir):
output_folder.upload_file(f, os.path.join(temp_dir, f))
def split_in_df(files):
documents = split_doc_in_chunks(files)
df = pd.DataFrame()
for document in documents:
content = document.page_content
metadata = document.metadata
metadata_keys = list(metadata.keys())
metadata_values = list(metadata.values())
doc_data = {'Content': content}
for key, value in zip(metadata_keys, metadata_values):
doc_data[key] = value
df = pd.concat([df, pd.DataFrame([doc_data])], ignore_index=True)
df.to_excel("dataframe.xlsx", index=False)
return "dataframe.xlsx" |