File size: 23,379 Bytes
ef5d30c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9d9111
 
 
ef5d30c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9d9111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64031ab
c9d9111
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
import numpy as np
import io
import os
import logging
import collections
import tempfile
from langchain.document_loaders import UnstructuredFileLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceEmbeddings

from langchain.document_loaders import PDFMinerPDFasHTMLLoader
from bs4 import BeautifulSoup
import re
from langchain.docstore.document import Document

import unstructured
from unstructured.partition.docx import partition_docx
from unstructured.partition.auto import partition

from transformers import AutoTokenizer

import pandas as pd


MODEL = "thenlper/gte-base"
CHUNK_SIZE = 1000
CHUNK_OVERLAP = 200

embeddings = HuggingFaceEmbeddings(
    model_name=MODEL,
    cache_folder=os.getenv("SENTENCE_TRANSFORMERS_HOME")
)

model_id = "mistralai/Mistral-7B-Instruct-v0.1"

tokenizer = AutoTokenizer.from_pretrained(
    model_id,
    padding_side="left"
)

text_splitter = CharacterTextSplitter(
    separator = "\n",
    chunk_size = CHUNK_SIZE,
    chunk_overlap  = CHUNK_OVERLAP,
    length_function = len,
)

## PDF Functions

def group_text_by_font_size(content):
    cur_fs = []
    cur_text = ''
    cur_page = -1
    cur_c = content[0]
    multi_fs = False
    snippets = []   # first collect all snippets that have the same font size
    for c in content:
        # print(f"c={c}\n\n")
        if c.find('a') != None and c.find('a').get('name'):
            cur_page = int(c.find('a').get('name'))
        sp_list = c.find_all('span')
        if not sp_list:
            continue
        for sp in sp_list:
            # print(f"sp={sp}\n\n")
            if not sp:
                continue
            st = sp.get('style')
            if not st:
                continue
            fs = re.findall('font-size:(\d+)px',st)
            # print(f"fs={fs}\n\n")
            if not fs:
                continue
            fs = [int(fs[0])]
            if len(cur_fs)==0:
                cur_fs = fs
            if fs == cur_fs:
                cur_text += sp.text
            elif not sp.find('br') and cur_c==c:
                cur_text += sp.text
                cur_fs.extend(fs)
                multi_fs = True
            elif sp.find('br') and multi_fs == True: # if a br tag is found and the text is in a different fs, it is the last part of the multifontsize line
                cur_fs.extend(fs)
                snippets.append((cur_text+sp.text,max(cur_fs), cur_page))
                cur_fs = []
                cur_text = ''
                cur_c = c
                multi_fs = False
            else:
                snippets.append((cur_text,max(cur_fs), cur_page))
                cur_fs = fs
                cur_text = sp.text
                cur_c = c
                multi_fs = False
    snippets.append((cur_text,max(cur_fs), cur_page))
    return snippets

def get_titles_fs(fs_list):
    filtered_fs_list = [item[0] for item in fs_list if item[0] > fs_list[0][0]]
    return sorted(filtered_fs_list, reverse=True)

def calculate_total_characters(snippets):
    font_sizes = {}  #dictionary to store font-size and total characters

    for text, font_size, _ in snippets:
        #remove newline# and digits
        cleaned_text = text.replace('\n', '')
        #cleaned_text = re.sub(r'\d+', '', cleaned_text)
        total_characters = len(cleaned_text)

        #update the dictionary
        if font_size in font_sizes:
            font_sizes[font_size] += total_characters
        else:
            font_sizes[font_size] = total_characters
    #convert the dictionary into a sorted list of tuples
    size_charac_list = sorted(font_sizes.items(), key=lambda x: x[1], reverse=True)

    return size_charac_list

def create_documents(source, snippets, font_sizes):
    docs = []

    titles_fs = get_titles_fs(font_sizes)

    for snippet in snippets:
        cur_fs = snippet[1]
        if cur_fs>font_sizes[0][0] and len(snippet[0])>2:
            content = min((titles_fs.index(cur_fs)+1), 3)*"#" + " " + snippet[0].replace("  ", " ")
            category = "Title"
        else:
            content = snippet[0].replace("  ", " ")
            category = "Paragraph"
        metadata={"source":source, "filename":source.split("/")[-1], "file_directory": "/".join(source.split("/")[:-1]), "file_category":"", "file_sub-cat":"", "file_sub2-cat":"", "category":category, "filetype":source.split(".")[-1], "page_number":snippet[2]}
        categories = source.split("/")
        cat_update=""
        if len(categories)>4:
            cat_update = {"file_category":categories[1], "file_sub-cat":categories[2], "file_sub2-cat":categories[3]}
        elif len(categories)>3:
            cat_update = {"file_category":categories[1], "file_sub-cat":categories[2]}
        elif len(categories)>2:
            cat_update = {"file_category":categories[1]}
        metadata.update(cat_update)
        docs.append(Document(page_content=content, metadata=metadata))
    return docs

## Group Chunks docx or pdf

# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE
def group_chunks_by_section(chunks, min_chunk_size=512):
    filtered_chunks = [chunk for chunk in chunks if chunk.metadata['category'] != 'PageBreak']# Add more filters if needed
    #print(f"filtered = {len(filtered_chunks)} - before = {len(chunks)}")
    new_chunks = []
    seen_paragraph = False
    new_title = True #switches when there is a new paragraph to create a new chunk
    for i, chunk in enumerate(filtered_chunks):
#         print(f"\n\n\n#{i}:METADATA: {chunk.metadata['category']}")
        if new_title:
            #print(f"<-- NEW title DETECTED -->")
            new_chunk = chunk
            new_title = False
            add_content = False
            new_chunk.metadata['titles'] = ""
            #print(f"CONTENT: {new_chunk.page_content}\nMETADATA: {new_chunk.metadata['category']} \n  title: {new_chunk.metadata['title']}")

        if chunk.metadata['category'].lower() =='title':
            new_chunk.metadata['titles'] += f"{chunk.page_content} ~~ "
        else:
            #Activates when a paragraph is seen after one or more titles
            seen_paragraph = True

        #Avoid adding the title 2 times to the page content
        if add_content:#and chunk.page_content not in new_chunk.page_content
            new_chunk.page_content += f"\n{chunk.page_content}"
        #edit the end_page number, the last one keeps its place
        try:
            new_chunk.metadata['end_page'] = chunk.metadata['page_number']
        except:
            print("", end="")
            #print("Exception: No page number in metadata")

        add_content = True

        #If filtered_chunks[i+1] raises an error, this is probably because this is the last chunk
        try:
            #If the next chunk is a title and we have already seen a paragraph and the current chunk content is long enough, we create a new document
            if filtered_chunks[i+1].metadata['category'].lower() =="title" and seen_paragraph and len(new_chunk.page_content)>min_chunk_size:
                if 'category' in new_chunk.metadata:
                    new_chunk.metadata.pop('category')
                new_chunks.append(new_chunk)
                new_title = True
                seen_paragraph = False
        #index out of range
        except:
            new_chunks.append(new_chunk)
            #print('🆘 Gone through all chunks 🆘')
            break
    return new_chunks

# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE
## Split documents by font

def split_pdf(file_path, folder):
    loader = PDFMinerPDFasHTMLLoader(file_path)

    data = loader.load()[0]   # entire pdf is loaded as a single Document
    soup = BeautifulSoup(data.page_content,'html.parser')
    content = soup.find_all('div')#List of all elements in div tags
    try:
        snippets = group_text_by_font_size(content)
    except Exception as e:
        print("ERROR WHILE GROUPING BY FONT SIZE", e)
        snippets = [("ERROR WHILE GROUPING BY FONT SIZE", 0, -1)]
    font_sizes = calculate_total_characters(snippets)#get the amount of characters for each font_size
    chunks = create_documents(file_path, snippets, font_sizes)
    return chunks

# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE
def split_docx(file_path, folder):
    chunks_elms = partition_docx(filename=file_path)
    chunks = []
    file_categories = file_path.split("/")
    for chunk_elm in chunks_elms:
        category = chunk_elm.category
        if category == "Title":
            chunk = Document(page_content= min(chunk_elm.metadata.to_dict()['category_depth']+1, 3)*"#" + ' ' + chunk_elm.text, metadata=chunk_elm.metadata.to_dict())
        else:
            chunk = Document(page_content=chunk_elm.text, metadata=chunk_elm.metadata.to_dict())
        metadata={"source":file_path, "filename":file_path.split("/")[-1], "file_category":"", "file_sub-cat":"", "file_sub2-cat":"", "category":category, "filetype":file_path.split(".")[-1]}
        cat_update=""
        if len(file_categories)>4:
            cat_update = {"file_category":file_categories[1], "file_sub-cat":file_categories[2], "file_sub2-cat":file_categories[3]}
        elif len(file_categories)>3:
            cat_update = {"file_category":file_categories[1], "file_sub-cat":file_categories[2]}
        elif len(file_categories)>2:
            cat_update = {"file_category":file_categories[1]}
        metadata.update(cat_update)
        chunk.metadata.update(metadata)
        chunks.append(chunk)
    return chunks

# Load the index of documents (if it has already been built)

def rebuild_index(input_folder, output_folder):
    paths_time = []
    to_keep = set()
    print(f'number of files {len(paths_time)}')
    if len(output_folder.list_paths_in_partition()) > 0:
        with tempfile.TemporaryDirectory() as temp_dir:
            for f in output_folder.list_paths_in_partition():
                with output_folder.get_download_stream(f) as stream:
                    with open(os.path.join(temp_dir, os.path.basename(f)), "wb") as f2:
                        f2.write(stream.read())
            index = FAISS.load_local(temp_dir, embeddings)
            to_remove = []
            logging.info(f"{len(index.docstore._dict)} vectors loaded")
            for idx, doc in index.docstore._dict.items():
                source = (doc.metadata["source"], doc.metadata["last_modified"])
                if source in paths_time:
                    # Identify documents already indexed and still present in the source folder
                    to_keep.add(source)
                else:
                    # Identify documents removed from the source folder
                    to_remove.append(idx)

            docstore_id_to_index = {v: k for k, v in index.index_to_docstore_id.items()}

            # Remove documents that have been deleted from the source folder
            vectors_to_remove = []
            for idx in to_remove:
                del index.docstore._dict[idx]
                ind = docstore_id_to_index[idx]
                del index.index_to_docstore_id[ind]
                vectors_to_remove.append(ind)
            index.index.remove_ids(np.array(vectors_to_remove, dtype=np.int64))

            index.index_to_docstore_id = {
                i: ind
                for i, ind in enumerate(index.index_to_docstore_id.values())
            }
            logging.info(f"{len(to_remove)} vectors removed")
    else:
        index = None
    to_add = [path[0] for path in paths_time if path not in to_keep]
    print(f'to_keep: {to_keep}')
    print(f'to_add: {to_add}')
    return index, to_add

# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE
def split_chunks_by_tokens(documents, max_length=170, overlap=10):
    # Create an empty list to store the resized documents
    resized = []

    # Iterate through the original documents list
    for doc in documents:
        encoded = tokenizer.encode(doc.page_content)
        if len(encoded) > max_length:
            remaining_encoded = tokenizer.encode(doc.page_content)
            while len(remaining_encoded) > 0:
                split_doc = Document(page_content=tokenizer.decode(remaining_encoded[:max(10, max_length)]), metadata=doc.metadata.copy())
                resized.append(split_doc)
                remaining_encoded = remaining_encoded[max(10, max_length - overlap):]

        else:
            resized.append(doc)
    print(f"Number of chunks before resplitting: {len(documents)} \nAfter splitting: {len(resized)}")
    return resized

# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE
def split_chunks_by_tokens_period(documents, max_length=170, overlap=10, min_chunk_size=20):
    # Create an empty list to store the resized documents
    resized = []
    previous_file=""
    # Iterate through the original documents list
    for doc in documents:
        current_file = doc.metadata['source']
        if current_file != previous_file: #chunk counting
            previous_file = current_file
            chunk_counter = 0
            is_first_chunk = True  # Keep track of the first chunk in the document
        encoded = tokenizer.encode(doc.page_content)#encode the current document
        if len(encoded) > max_length:
            remaining_encoded = encoded
            is_last_chunk = False
            while len(remaining_encoded) > 1 and not is_last_chunk:
                # Check for a period in the first 'overlap' tokens
                overlap_text = tokenizer.decode(remaining_encoded[:overlap])# Index by token
                period_index_b = overlap_text.find('.')# Index by character
                if len(remaining_encoded)>max_length + min_chunk_size:
                    current_encoded = remaining_encoded[:max(10, max_length)]
                else:
                    current_encoded = remaining_encoded[:max(10, max_length + min_chunk_size)] #if the last chunk is to small, concatenate it with the previous one
                    is_last_chunk = True
                period_index_e = len(doc.page_content) # an amount of character that I am sure will be greater or equal to the max lengh of a chunk, could have done len(tokenizer.decode(current_encoded))
                if len(remaining_encoded)>max_length+min_chunk_size:# If it is not the last sub chunk
                    overlap_text_last = tokenizer.decode(current_encoded[-overlap:])
                    period_index_last = overlap_text_last.find('.')
                    if period_index_last != -1 and period_index_last < len(overlap_text_last) - 1:
                        #print(f"period index last found at {period_index_last}")
                        period_index_e = period_index_last - len(overlap_text_last) + 1
                        #print(f"period_index_e :{period_index_e}")
                    #print(f"last :{overlap_text_last}")
                if not is_first_chunk:#starting after the period in overlap
                    if period_index_b == -1:# Period not found in overlap
                        #print(". not found in overlap")
                        split_doc = Document(page_content=tokenizer.decode(current_encoded)[:period_index_e], metadata=doc.metadata.copy()) # Keep regular splitting
                    else:
                        if is_last_chunk : #not the first but the last
                            split_doc = Document(page_content=tokenizer.decode(current_encoded)[period_index_b+1:], metadata=doc.metadata.copy())
                        #print("Should start after \".\"")
                        else:
                            split_doc = Document(page_content=tokenizer.decode(current_encoded)[period_index_b+1:period_index_e], metadata=doc.metadata.copy()) # Split at the begining and the end
                else:#first chunk
                    split_doc = Document(page_content=tokenizer.decode(current_encoded)[:period_index_e], metadata=doc.metadata.copy()) # split only at the end if its first chunk
                if 'titles' in split_doc.metadata:
                    chunk_counter += 1
                    split_doc.metadata['chunk_id'] = chunk_counter
                #A1 We could round chunk length in token if we ignore the '.' position in the overlap and save time of computation
                split_doc.metadata['token_length'] = len(tokenizer.encode(split_doc.page_content))
                resized.append(split_doc)
                remaining_encoded = remaining_encoded[max(10, max_length - overlap):]
                is_first_chunk = False
                #print(len(tokenizer.encode(split_doc.page_content)), split_doc.page_content, "\n-----------------")
        elif len(encoded)>min_chunk_size:#ignore the chunks that are too small
            #print(f"◀Document:{{ {doc.page_content} }} was not added because to short▶")
            if 'titles' in doc.metadata:#check if it was splitted by or split_docx
                chunk_counter += 1
                doc.metadata['chunk_id'] = chunk_counter
                doc.metadata['token_length'] = len(encoded)
            resized.append(doc)
    print(f"Number of chunks before resplitting: {len(documents)} \nAfter splitting: {len(resized)}")
    return resized

# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE

def split_doc_in_chunks(input_folder):
    docs = []
    for i, filename in enumerate(input_folder):
        path = filename#os.path.join(input_folder, filename)
        print(f"Treating file {i}/{len(input_folder)}")
        # Select the appropriate document loader
        chunks=[]
        if path.endswith(".pdf"):
            try:
                print("Treatment of pdf file", path)
                raw_chuncks = split_pdf(path, input_folder)
                chunks = group_chunks_by_section(raw_chuncks)
                print(f"Document splitted in {len(chunks)} chunks")
                # for chunk in chunks:
                    # print(f"\n\n____\n\n\nPDF CONTENT: \n{chunk.page_content}\ntitle: {chunk.metadata['title']}\nFile Name: {chunk.metadata['filename']}\n\n")
            except Exception as e:
                print("Error while splitting the pdf file: ", e)
        elif path.endswith(".docx"):
            try:
                print ("Treatment of docx file", path)
                raw_chuncks = split_docx(path, input_folder)
                #print(f"RAW :\n***\n{raw_chuncks}")
                chunks = group_chunks_by_section(raw_chuncks)
                print(f"Document splitted in {len(chunks)} chunks")
                #if "cards-Jan 2022-SP.docx" in path:
                    #for chunk in chunks:
                        #print(f"\n\n____\n\n\nDOCX CONTENT: \n{chunk.page_content}\ntitle: {chunk.metadata['title']}\nFile Name: {chunk.metadata['filename']}\n\n")
            except Exception as e:
                print("Error while splitting the docx file: ", e)
        elif path.endswith(".doc"):
            try:
                loader = UnstructuredFileLoader(path)
                # Load the documents and split them in chunks
                chunks = loader.load_and_split(text_splitter=text_splitter)
                counter, counter2 = collections.Counter(), collections.Counter()
                filename = os.path.basename(path)
                # Define a unique id for each chunk
                for chunk in chunks:
                    chunk.metadata["filename"] = filename.split("/")[-1]
                    chunk.metadata["file_directory"] = filename.split("/")[:-1]
                    chunk.metadata["filetype"] = filename.split(".")[-1]
                    if "page" in chunk.metadata:
                        counter[chunk.metadata['page']] += 1
                        for i in range(len(chunks)):
                            counter2[chunks[i].metadata['page']] += 1
                            chunks[i].metadata['source'] = filename
                    else:
                        if len(chunks) == 1:
                            chunks[0].metadata['source'] = filename
            #The file type is not supported (e.g. .xlsx)
            except Exception as e:
                print(f"An error occurred: {e}")
        try:
            if len(chunks)>0:
                docs += chunks
        except NameError as e:
            print(f"An error has occured: {e}")
    return docs

# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE
def resplit_by_end_of_sentence(docs):
    print("❌❌\nResplitting docs by end of sentence\n❌❌")
    resized_docs = split_chunks_by_tokens_period(docs, max_length=200, overlap=40, min_chunk_size=20)
    try:
        # add chunk title to all resplitted chunks #todo move this to split_chunks_by_tokens_period(inject_title = True) with a boolean parameter
        cur_source = ""
        cpt_chunk = 1
        for resized_doc in resized_docs:
            try:
                title = resized_doc.metadata['titles'].split(' ~~ ')[-2] #Getting the last title of the chunk and adding it to the content if it is not the case
                if title not in resized_doc.page_content:
                    resized_doc.page_content = title + "\n" + resized_doc.page_content
                if cur_source == resized_doc.metadata["source"]:
                    resized_doc.metadata['chunk_number'] = cpt_chunk
                else:
                    cpt_chunk = 1
                    cur_source = resized_doc.metadata["source"]
                    resized_doc.metadata['chunk_number'] = cpt_chunk
            except Exception as e:#either the title was notfound or title absent in metadata
                print("An error occured: ", e)
                #print(f"METADATA:\n{resized_doc.metadata}")
            cpt_chunk += 1
    except Exception as e:
        print('AN ERROR OCCURRED: ', e)
    return resized_docs

# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE
def build_index(docs, index, output_folder):
    if len(docs) > 0:
        if index is not None:
             # Compute the embedding of each chunk and index these chunks
            new_index = FAISS.from_documents(docs, embeddings)
            index.merge_from(new_index)
        else:
            index = FAISS.from_documents(docs, embeddings)
    with tempfile.TemporaryDirectory() as temp_dir:
        index.save_local(temp_dir)
        for f in os.listdir(temp_dir):
            output_folder.upload_file(f, os.path.join(temp_dir, f))


def split_in_df(files):
    documents = split_doc_in_chunks(files)
    df = pd.DataFrame()
    for document in documents:
        content = document.page_content

        metadata = document.metadata
        metadata_keys = list(metadata.keys())
        metadata_values = list(metadata.values())

        doc_data = {'Content': content}

        for key, value in zip(metadata_keys, metadata_values):
            doc_data[key] = value

        df = pd.concat([df, pd.DataFrame([doc_data])], ignore_index=True)

    df.to_excel("dataframe.xlsx", index=False)

    return "dataframe.xlsx"