Spaces:
Sleeping
Sleeping
File size: 9,298 Bytes
070c576 6449689 f9c03d9 4425add c8197d4 5b23034 7d204ba 92d0a3c 4d5131c 6449689 d6d1995 6449689 410e03d 4011ea8 327828d 4011ea8 410e03d 327828d 410e03d 6449689 7d204ba 031a5a3 7d204ba 8cfa293 7d204ba 8cfa293 7d204ba 8cfa293 7d204ba d6d1995 7d204ba 1b13e5d 7d204ba abb77ac 410e03d 6449689 070c576 69bb9c0 d6d1995 fcf5842 d6d1995 2acbe1f d6d1995 ac2abcc 6449689 070c576 a747dde ac2abcc 378fa83 6449689 070c576 6449689 070c576 7e62d93 6449689 4011ea8 2acbe1f 7e62d93 4011ea8 7e62d93 69bb9c0 070c576 6449689 13ff5b8 070c576 4011ea8 070c576 c8197d4 853deb7 c8197d4 070c576 c8197d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import gradio as gr
from mistralai.client import MistralClient
from mistralai.models.chat_completion import ChatMessage
import os
import pandas as pd
import numpy as np
from groq import Groq
import anthropic
from users_management import update_json, users
from code_df_custom import load_excel
import zipfile
from openai import *
import time
#users = ['maksG', 'AlmaA', 'YchK']
def ask_llm(query, user_input, client_index, user, keys):
messages = [
{
"role": "system",
"content": f"You are a helpful assistant. Only show your final response to the **User Query**! Do not provide any explanations or details: \n# User Query:\n{query}."
},
{
"role": "user",
"content": user_input,
}
]
systemC = messages[0]["content"]
messageC = [{
"role": "user",
"content": [{
"type": "text",
"text": user_input
}]
}]
try:
if "Mistral" in client_index:
client = MistralClient(api_key=os.environ[user['api_keys']['mistral']])
model_map = {
"Mistral Tiny": "mistral-tiny",
"Mistral Small": "mistral-small-latest",
"Mistral Medium": "mistral-medium",
}
chat_completion = client.chat(messages=messages, model=model_map[client_index])
elif "Claude" in client_index:
client = anthropic.Anthropic(api_key=os.environ[user['api_keys']['claude']])
model_map = {
"Claude Sonnet": "claude-3-sonnet-20240229",
"Claude Opus": "claude-3-opus-20240229",
}
response = client.messages.create(
model=model_map[client_index],
max_tokens=350,
temperature=0,
system=systemC,
messages=messageC
)
return response.content[0].text
elif "GPT 4o" in client_index:
client = OpenAI(api_key=os.environ["OPENAI_YCHK"])
response = client.chat.completions.create(
model="gpt-4o",
messages=messageC
)
return response.choices[0][message][content].text
elif "Perplexity" in client_index:
client = OpenAI(api_key=os.environ["PERPLEXITY_ALMAA"], base_url="https://api.perplexity.ai")
model_map = {
"Perplexity Llama3 70b": "llama-3-70b-instruct",
"Perplexity Llama3 8b": "llama-3-8b-instruct",
"Perplexity Llama3 Sonar Small": "llama-3-sonar-small-32k-chat",
"Perplexity Llama3 Sonar Large": "llama-3-sonar-large-32k-chat"
}
response = client.chat.completions.create(
model=model_map[client_index],
messages=messageC
)
responseContent = str(response.choices[0].message.content)
print(responseContent)
return responseContent,keys
elif "Groq" in client_index:
try:
client = Groq(api_key= os.getenv(keys[0]))
model_map = {
"Groq Mixtral": "mixtral-8x7b-32768",
"Groq Llama3 70b": "llama3-70b-8192",
"Groq Llama3 8b": "llama3-8b-8192"
}
chat_completion = client.chat.completions.create(
messages=messages,
model=model_map[client_index],
)
response = chat_completion.choices[0].message.content
except Exception as e:
print("Change key")
if keys[0] == keys[1][0]:
keys[0] = keys[1][1]
elif keys[0] == keys[1][1]:
keys[0] = keys[1][2]
else:
keys[0] = keys[1][0]
client = Groq(api_key= os.getenv(keys[0]))
chat_completion = client.chat.completions.create(
messages=messages,
model='llama3-8b-8192',
)
response = chat_completion.choices[0].message.content
else:
raise ValueError("Unsupported client index provided")
# Return the response, handling the structure specific to Groq and Mistral clients.
return chat_completion.choices[0].message.content,keys if client_index != "Claude" else chat_completion
except (BadRequestError) as e:
model_id = "meta-llama/Meta-Llama-3-70B-Instruct"
access_token = os.getenv("HUGGINGFACE_SPLITFILES_API_KEY")
tokenizer = AutoTokenizer.from_pretrained(
model_id,
padding_side="left",
token = access_token
)
user_input_tokenized = tokenizer.encode(user_input)
messages = []
while len(user_input_tokenized) > max_token:
user_input_divided = tokenizer.decode(user_input_tokenized[:max_token])
messages.append([
{
"role": "system",
"content": f"You are a helpful assistant. Only show your final response to the **User Query**! Do not provide any explanations or details: \n# User Query:\n{query}."
},
{
"role": "user",
"content": user_input_divided,
}])
user_input_tokenized = user_input_tokenized[max_token:]
responses = []
print(len(messages))
for msg in messages:
responses.append(client.chat.completions.create(
model=model_map["Perplexity Llama3 70b"],
messages=msg
))
response = ""
for resp in responses:
response += " " + resp.choices[0].message.content
return response
except (RateLimitError) as e:
#if model_user in keys:
#Swap those keys
# return f()
#else:
#get eepy
time.sleep(60)
return ask_llm(query, user_input, client_index, user, keys)
except Exception as e:
print(e)
return "unhandled error",keys if client_index != "Claude" else chat_completion
def filter_df(df, column_name, keywords):
if len(keywords)>0:
if column_name in df.columns:
contains_keyword = lambda x: any(keyword.lower() in (x.lower() if type(x)==str else '') for keyword in keywords)
filtered_df = df[df[column_name].apply(contains_keyword)]
else:
contains_keyword = lambda row: any(keyword.lower() in (str(cell).lower() if isinstance(cell, str) else '') for keyword in keywords for cell in row)
filtered_df = df[df.apply(contains_keyword, axis=1)]
else:
filtered_df = df
return filtered_df
def chat_with_mistral(source_cols, dest_col, prompt, excel_file, url, search_col, keywords, client, user):
# API Keys for Groq :
KEYS = ['GROQ_API_KEY1', 'GROQ_API_KEY2', 'GROQ_API_KEY3']
GroqKey = KEYS[0]
gloabal_keys = [GroqKey, KEYS]
new_prompts, new_keywords, new_user, conf_file_path = update_json(user, prompt, keywords)
print(f'xlsxfile = {excel_file}')
df = pd.read_excel(excel_file)
df[dest_col] = ""
if excel_file:
file_name = excel_file.split('.xlsx')[0] + "_with_" + dest_col.replace(' ', '_') + ".xlsx"
elif url.endswith('Docs/', 'Docs'):
file_name = url.split("/Docs")[0].split("/")[-1] + ".xlsx"
else:
file_name = "meeting_recap_grid.xlsx"
print(f"Keywords: {keywords}")
filtred_df = filter_df(df, search_col, keywords)
cpt = 1
for index, row in filtred_df.iterrows():
concatenated_content = "\n\n".join(f"{column_name}: {str(row[column_name])}" for column_name in source_cols)
if not concatenated_content == "\n\n".join(f"{column_name}: nan" for column_name in source_cols):
llm_answer,gloabal_keys = ask_llm(prompt[0], concatenated_content, client, user, gloabal_keys)
print(f"{cpt}/{len(filtred_df)}\nQUERY:\n{prompt[0]}\nCONTENT:\n{concatenated_content[:200]}...\n\nANSWER:\n{llm_answer}")
df.at[index, dest_col] = llm_answer
cpt += 1
# progress((index+1)/len(df),desc=f'Request {index+1}/{len(df)}')
df.to_excel(file_name, index=False)
zip_file_path = 'config_file.zip'
with zipfile.ZipFile(zip_file_path, 'w') as zipf:
zipf.write(conf_file_path, os.path.basename(conf_file_path))
return file_name, df.head(5), new_prompts, new_keywords, new_user, zip_file_path
def get_columns(file,progress=gr.Progress()):
if file is not None:
#df = pd.read_excel(file)
filename, df = load_excel(file)
columns = list(df.columns)
return gr.update(choices=columns), gr.update(choices=columns), gr.update(choices=columns), gr.update(choices=columns + [""]), gr.update(choices=columns + ['[ALL]']), df.head(5), filename, df
else:
return gr.update(choices=[]), gr.update(choices=[]), gr.update(choices=[]), gr.update(choices=[]), gr.update(choices=[]), pd.DataFrame(), '', pd.DataFrame() |