Spaces:
Sleeping
Sleeping
File size: 42,130 Bytes
ef5d30c 888ebbf ef5d30c d8f9baa ef5d30c 74e0465 ef5d30c 4c80563 c9d9111 3f5d008 0a6c112 ef5d30c 7667045 ef5d30c 0a6c112 74e0465 ef5d30c 98c1594 217990e 98c1594 0ecdd79 ae9b962 98c1594 4d16651 2d79f61 4d16651 98c1594 ef5d30c 5fb1f69 ef5d30c 62ab562 ef5d30c 62ab562 ef5d30c 62ab562 bf3f371 62ab562 ef5d30c 7667045 ef5d30c 7667045 ef5d30c 7667045 9767141 7667045 40b1456 7667045 ef5d30c 7667045 ef5d30c 7667045 ef5d30c 7667045 ef5d30c 40b1456 7667045 ef5d30c 7667045 ef5d30c 7667045 ef5d30c 7667045 ef5d30c 7667045 40b1456 ef5d30c 7667045 40b1456 ef5d30c 7667045 40b1456 ef5d30c 7667045 40b1456 ef5d30c 7667045 ef5d30c 7667045 ef5d30c 7667045 ef5d30c 7667045 40b1456 ef5d30c 7667045 ef5d30c ae9b962 ef5d30c b5d29e3 ef5d30c e1c1593 62ab562 70d5c40 e1c1593 c778b9c e1c1593 c778b9c e1c1593 ef5d30c 62ab562 9ea18b7 ef5d30c 9ea18b7 ef5d30c 62ab562 ef5d30c b012677 ef5d30c b012677 ef5d30c c9d9111 d425ddf ae9b962 50ecf36 9ea18b7 d425ddf 9a0115c d425ddf 9ea18b7 b5d29e3 9ea18b7 ae9b962 288dd42 d425ddf c9d9111 b012677 c9d9111 e086aec c9d9111 e086aec c9d9111 a0ac111 9ea18b7 a0ac111 e086aec c9d9111 64031ab c9d9111 6216165 6d88814 3f5d008 6216165 f744aab 3f5d008 f744aab a2e557e f744aab a2e557e f744aab a2e557e 6d88814 a2e557e f744aab a2e557e f744aab a2e557e 6216165 f744aab a2e557e f744aab a2e557e f744aab a2e557e f744aab a2e557e f744aab a2e557e f744aab a2e557e f744aab a2e557e 6216165 a2e557e 6216165 f744aab a2e557e 6216165 f744aab a2e557e f744aab a2e557e f744aab 6216165 dde97ad 3f5d008 6216165 f744aab 60ecaf0 f744aab 6d88814 f744aab 6d88814 f744aab 6d88814 3f5d008 cacfa67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 |
import numpy as np
import io
import os
import zipfile
import logging
import collections
import tempfile
from langchain.document_loaders import UnstructuredFileLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceEmbeddings
import gradio as gr
from langchain.document_loaders import PDFMinerPDFasHTMLLoader
from bs4 import BeautifulSoup
import re
from langchain.docstore.document import Document
import unstructured
from unstructured.partition.docx import partition_docx
from unstructured.partition.auto import partition
import tiktoken
#from transformers import AutoTokenizer
from pypdf import PdfReader
import pandas as pd
import requests
import json
MODEL = "thenlper/gte-base"
CHUNK_SIZE = 1500
CHUNK_OVERLAP = 400
embeddings = HuggingFaceEmbeddings(
model_name=MODEL,
cache_folder=os.getenv("SENTENCE_TRANSFORMERS_HOME")
)
# model_id = "mistralai/Mistral-7B-Instruct-v0.1"
# access_token = os.getenv("HUGGINGFACE_SPLITFILES_API_KEY")
# tokenizer = AutoTokenizer.from_pretrained(
# model_id,
# padding_side="left",
# token = access_token
# )
tokenizer = tiktoken.encoding_for_model("gpt-3.5-turbo")
text_splitter = CharacterTextSplitter(
separator = "\n",
chunk_size = CHUNK_SIZE,
chunk_overlap = CHUNK_OVERLAP,
length_function = len,
)
# def update_label(label1):
# return gr.update(choices=list(df.columns))
def function_split_call(fi_input, dropdown, choice, chunk_size):
if choice == "Intelligent split":
nb_pages = chunk_size
return split_in_df(fi_input, nb_pages)
elif choice == "Non intelligent split":
return non_intelligent_split(fi_input, chunk_size)
else:
return split_by_keywords(fi_input,dropdown)
def change_textbox(dropdown,radio):
if len(dropdown) == 0 :
dropdown = ["introduction", "objective", "summary", "conclusion"]
if radio == "Intelligent split":
return gr.Dropdown(dropdown, visible=False), gr.Number(label="First pages to keep (0 for all)", value=2, interactive=True, visible=True)
elif radio == "Intelligent split by keywords":
return gr.Dropdown(dropdown, multiselect=True, visible=True, allow_custom_value=True), gr.Number(visible=False)
elif radio == "Non intelligent split":
return gr.Dropdown(dropdown, visible=False),gr.Number(label="Chunk size", value=1000, interactive=True, visible=True)
else:
return gr.Dropdown(dropdown, visible=False),gr.Number(visible=False)
def group_text_by_font_size(content):
cur_fs = []
cur_text = ''
cur_page = -1
cur_c = content[0]
multi_fs = False
snippets = [] # first collect all snippets that have the same font size
for c in content:
# print(f"c={c}\n\n")
if c.find('a') != None and c.find('a').get('name'):
cur_page = int(c.find('a').get('name'))
sp_list = c.find_all('span')
if not sp_list:
continue
for sp in sp_list:
# print(f"sp={sp}\n\n")
if not sp:
continue
st = sp.get('style')
if not st:
continue
fs = re.findall('font-size:(\d+)px',st)
# print(f"fs={fs}\n\n")
if not fs:
continue
fs = [int(fs[0])]
if len(cur_fs)==0:
cur_fs = fs
if fs == cur_fs:
cur_text += sp.text
elif not sp.find('br') and cur_c==c:
cur_text += sp.text
cur_fs.extend(fs)
multi_fs = True
elif sp.find('br') and multi_fs == True: # if a br tag is found and the text is in a different fs, it is the last part of the multifontsize line
cur_fs.extend(fs)
snippets.append((cur_text+sp.text,max(cur_fs), cur_page))
cur_fs = []
cur_text = ''
cur_c = c
multi_fs = False
else:
snippets.append((cur_text,max(cur_fs), cur_page))
cur_fs = fs
cur_text = sp.text
cur_c = c
multi_fs = False
snippets.append((cur_text,max(cur_fs), cur_page))
return snippets
def get_titles_fs(fs_list):
filtered_fs_list = [item[0] for item in fs_list if item[0] > fs_list[0][0]]
return sorted(filtered_fs_list, reverse=True)
def calculate_total_characters(snippets):
font_sizes = {} #dictionary to store font-size and total characters
for text, font_size, _ in snippets:
#remove newline# and digits
cleaned_text = text.replace('\n', '')
#cleaned_text = re.sub(r'\d+', '', cleaned_text)
total_characters = len(cleaned_text)
#update the dictionary
if font_size in font_sizes:
font_sizes[font_size] += total_characters
else:
font_sizes[font_size] = total_characters
#convert the dictionary into a sorted list of tuples
size_charac_list = sorted(font_sizes.items(), key=lambda x: x[1], reverse=True)
return size_charac_list
def create_documents(source, snippets, font_sizes):
docs = []
titles_fs = get_titles_fs(font_sizes)
for snippet in snippets:
cur_fs = snippet[1]
if cur_fs>font_sizes[0][0] and len(snippet[0])>2:
content = min((titles_fs.index(cur_fs)+1), 3)*"#" + " " + snippet[0].replace(" ", " ")
category = "Title"
else:
content = snippet[0].replace(" ", " ")
category = "Paragraph"
metadata={"source":source, "filename":source.split("/")[-1], "file_directory": "/".join(source.split("/")[:-1]), "file_category":"", "file_sub-cat":"", "file_sub2-cat":"", "category":category, "filetype":source.split(".")[-1], "page_number":snippet[2]}
categories = source.split("/")
cat_update=""
if len(categories)>4:
cat_update = {"file_category":categories[1], "file_sub-cat":categories[2], "file_sub2-cat":categories[3]}
elif len(categories)>3:
cat_update = {"file_category":categories[1], "file_sub-cat":categories[2]}
elif len(categories)>2:
cat_update = {"file_category":categories[1]}
metadata.update(cat_update)
docs.append(Document(page_content=content, metadata=metadata))
return docs
## Group Chunks docx or pdf
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE
def group_chunks_by_section(chunks, min_chunk_size=64):
filtered_chunks = [chunk for chunk in chunks if chunk.metadata['category'] != 'PageBreak']# Add more filters if needed
#print(f"filtered = {len(filtered_chunks)} - before = {len(chunks)}")
new_chunks = []
seen_paragraph = False
new_title = True #switches when there is a new paragraph to create a new chunk
for i, chunk in enumerate(filtered_chunks):
# print(f"\n\n\n#{i}:METADATA: {chunk.metadata['category']}")
if new_title:
#print(f"<-- NEW title DETECTED -->")
new_chunk = chunk
new_title = False
add_content = False
new_chunk.metadata['titles'] = ""
#print(f"CONTENT: {new_chunk.page_content}\nMETADATA: {new_chunk.metadata['category']} \n title: {new_chunk.metadata['title']}")
if chunk.metadata['category'].lower() =='title':
new_chunk.metadata['titles'] += f"{chunk.page_content} ~~ "
else:
#Activates when a paragraph is seen after one or more titles
seen_paragraph = True
#Avoid adding the title 2 times to the page content
if add_content:#and chunk.page_content not in new_chunk.page_content
new_chunk.page_content += f"\n{chunk.page_content}"
#edit the end_page number, the last one keeps its place
try:
new_chunk.metadata['end_page'] = chunk.metadata['page_number']
except:
print("", end="")
#print("Exception: No page number in metadata")
add_content = True
#If filtered_chunks[i+1] raises an error, this is probably because this is the last chunk
try:
#If the next chunk is a title and we have already seen a paragraph and the current chunk content is long enough, we create a new document
if filtered_chunks[i+1].metadata['category'].lower() =="title" and seen_paragraph and len(new_chunk.page_content)>min_chunk_size:
if 'category' in new_chunk.metadata:
new_chunk.metadata.pop('category')
new_chunks.append(new_chunk)
new_title = True
seen_paragraph = False
#index out of range
except:
new_chunks.append(new_chunk)
#print('🆘 Gone through all chunks 🆘')
break
return new_chunks
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE
## Split documents by font
def split_pdf(file_path):
loader = PDFMinerPDFasHTMLLoader(file_path)
data = loader.load()[0] # entire pdf is loaded as a single Document
soup = BeautifulSoup(data.page_content,'html.parser')
content = soup.find_all('div')#List of all elements in div tags
try:
snippets = group_text_by_font_size(content)
except Exception as e:
print("ERROR WHILE GROUPING BY FONT SIZE", e)
snippets = [("ERROR WHILE GROUPING BY FONT SIZE", 0, -1)]
font_sizes = calculate_total_characters(snippets)#get the amount of characters for each font_size
chunks = create_documents(file_path, snippets, font_sizes)
return chunks
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE
def split_docx(file_path):
chunks_elms = partition_docx(filename=file_path)
chunks = []
file_categories = file_path.split("/")
for chunk_elm in chunks_elms:
category = chunk_elm.category
if category == "Title":
chunk = Document(page_content= min(chunk_elm.metadata.to_dict()['category_depth']+1, 3)*"#" + ' ' + chunk_elm.text, metadata=chunk_elm.metadata.to_dict())
else:
chunk = Document(page_content=chunk_elm.text, metadata=chunk_elm.metadata.to_dict())
metadata={"source":file_path, "filename":file_path.split("/")[-1], "file_category":"", "file_sub-cat":"", "file_sub2-cat":"", "category":category, "filetype":file_path.split(".")[-1]}
cat_update=""
if len(file_categories)>4:
cat_update = {"file_category":file_categories[1], "file_sub-cat":file_categories[2], "file_sub2-cat":file_categories[3]}
elif len(file_categories)>3:
cat_update = {"file_category":file_categories[1], "file_sub-cat":file_categories[2]}
elif len(file_categories)>2:
cat_update = {"file_category":file_categories[1]}
metadata.update(cat_update)
chunk.metadata.update(metadata)
chunks.append(chunk)
return chunks
def split_txt(file_path, chunk_size=700):
with open(file_path, 'r') as file:
content = file.read()
words = content.split()
chunks = [words[i:i + chunk_size] for i in range(0, len(words), chunk_size)]
file_basename = os.path.basename(file_path)
file_directory = os.path.dirname(file_path)
source = file_path
documents = []
for i, chunk in enumerate(chunks):
tcontent = ' '.join(chunk)
metadata = {
'source': source,
"filename": file_basename,
'file_directory': file_directory,
"file_category": "",
"file_sub-cat": "",
"file_sub2-cat": "",
"category": "",
"filetype": source.split(".")[-1],
"page_number": i
}
document = Document(page_content=tcontent, metadata=metadata)
documents.append(document)
return documents
# Load the index of documents (if it has already been built)
def rebuild_index(input_folder, output_folder):
paths_time = []
to_keep = set()
print(f'number of files {len(paths_time)}')
if len(output_folder.list_paths_in_partition()) > 0:
with tempfile.TemporaryDirectory() as temp_dir:
for f in output_folder.list_paths_in_partition():
with output_folder.get_download_stream(f) as stream:
with open(os.path.join(temp_dir, os.path.basename(f)), "wb") as f2:
f2.write(stream.read())
index = FAISS.load_local(temp_dir, embeddings)
to_remove = []
logging.info(f"{len(index.docstore._dict)} vectors loaded")
for idx, doc in index.docstore._dict.items():
source = (doc.metadata["source"], doc.metadata["last_modified"])
if source in paths_time:
# Identify documents already indexed and still present in the source folder
to_keep.add(source)
else:
# Identify documents removed from the source folder
to_remove.append(idx)
docstore_id_to_index = {v: k for k, v in index.index_to_docstore_id.items()}
# Remove documents that have been deleted from the source folder
vectors_to_remove = []
for idx in to_remove:
del index.docstore._dict[idx]
ind = docstore_id_to_index[idx]
del index.index_to_docstore_id[ind]
vectors_to_remove.append(ind)
index.index.remove_ids(np.array(vectors_to_remove, dtype=np.int64))
index.index_to_docstore_id = {
i: ind
for i, ind in enumerate(index.index_to_docstore_id.values())
}
logging.info(f"{len(to_remove)} vectors removed")
else:
index = None
to_add = [path[0] for path in paths_time if path not in to_keep]
print(f'to_keep: {to_keep}')
print(f'to_add: {to_add}')
return index, to_add
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE
def split_chunks_by_tokens(documents, max_length=170, overlap=10):
# Create an empty list to store the resized documents
resized = []
# Iterate through the original documents list
for doc in documents:
encoded = tokenizer.encode(doc.page_content)
if len(encoded) > max_length:
remaining_encoded = tokenizer.encode(doc.page_content)
while len(remaining_encoded) > 0:
split_doc = Document(page_content=tokenizer.decode(remaining_encoded[:max(10, max_length)]), metadata=doc.metadata.copy())
resized.append(split_doc)
remaining_encoded = remaining_encoded[max(10, max_length - overlap):]
else:
resized.append(doc)
print(f"Number of chunks before resplitting: {len(documents)} \nAfter splitting: {len(resized)}")
return resized
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE
def split_chunks_by_tokens_period(documents, max_length=170, overlap=10, min_chunk_size=20):
# Create an empty list to store the resized documents
resized = []
previous_file=""
to_encode = ""
skip_next = False
# Iterate through the original documents list
for i, doc in enumerate(documents):
if skip_next:
skip_next = False
continue
current_file = doc.metadata['source']
if current_file != previous_file: #chunk counting
previous_file = current_file
chunk_counter = 0
is_first_chunk = True # Keep track of the first chunk in the document
to_encode += doc.page_content
# if last chunk < min_chunk_size we add it to the previous chunk for the splitting.
try:
if (documents[i+1] is documents[-1] or documents[i+1].metadata['source'] != documents[i+2].metadata['source']) and len(tokenizer.encode(documents[i+1].page_content)) < min_chunk_size: # if the next doc is the last doc of the current file or the last of the corpus
# print('SAME DOC')
skip_next = True
to_encode += documents[i+1].page_content
except Exception as e:
print(e)
#print(f"to_encode:\n{to_encode}")
encoded = tokenizer.encode(to_encode)#encode the current document
if len(encoded) < min_chunk_size and not skip_next:
# print(f"len(encoded):{len(encoded)}<min_chunk_size:{min_chunk_size}")
continue
elif skip_next:
split_doc = Document(page_content=tokenizer.decode(encoded).replace('<s> ', ''), metadata=doc.metadata.copy())
split_doc.metadata['token_length'] = len(tokenizer.encode(split_doc.page_content))
resized.append(split_doc)
# print(f"Added a document of {split_doc.metadata['token_length']} tokens 1")
to_encode = ""
continue
else:
# print(f"len(encoded):{len(encoded)}>=min_chunk_size:{min_chunk_size}")
to_encode = ""
if len(encoded) > max_length:
# print(f"len(encoded):{len(encoded)}>=max_length:{max_length}")
remaining_encoded = encoded
is_last_chunk = False
while len(remaining_encoded) > 1 and not is_last_chunk:
# Check for a period in the first 'overlap' tokens
overlap_text = tokenizer.decode(remaining_encoded[:overlap])# Index by token
period_index_b = overlap_text.find('.')# Index by character
if len(remaining_encoded)>max_length + min_chunk_size:
# print("len(remaining_encoded)>max_length + min_chunk_size")
current_encoded = remaining_encoded[:max(10, max_length)]
else:
# print("not len(remaining_encoded)>max_length + min_chunk_size")
current_encoded = remaining_encoded #if the last chunk is to small, concatenate it with the previous one
is_last_chunk = True
split_doc = Document(page_content=tokenizer.decode(current_encoded).replace('<s> ', ''), metadata=doc.metadata.copy())
split_doc.metadata['token_length'] = len(tokenizer.encode(split_doc.page_content))
resized.append(split_doc)
# print(f"Added a document of {split_doc.metadata['token_length']} tokens 2")
break
period_index_e = -1 # an amount of character that I am sure will be greater or equal to the max lengh of a chunk, could have done len(tokenizer.decode(current_encoded))
if len(remaining_encoded)>max_length+min_chunk_size:# If it is not the last sub chunk
# print("len(remaining_encoded)>max_length+min_chunk_size")
overlap_text_last = tokenizer.decode(current_encoded[-overlap:])
period_index_last = overlap_text_last.find('.')
if period_index_last != -1 and period_index_last < len(overlap_text_last) - 1:
# print(f"period index last found at {period_index_last}")
period_index_e = period_index_last - len(overlap_text_last)
# print(f"period_index_e :{period_index_e}")
# print(f"last :{overlap_text_last}")
if not is_first_chunk:#starting after the period in overlap
# print("not is_first_chunk", period_index_b)
if period_index_b == -1:# Period not found in overlap
# print(". not found in overlap")
split_doc = Document(page_content=tokenizer.decode(current_encoded)[:period_index_e].replace('<s> ', ''), metadata=doc.metadata.copy()) # Keep regular splitting
else:
if is_last_chunk : #not the first but the last
# print("is_last_chunk")
split_doc = Document(page_content=tokenizer.decode(current_encoded)[period_index_b+1:].replace('<s> ', ''), metadata=doc.metadata.copy())
#print("Should start after \".\"")
else:
# print("not is_last_chunk", period_index_e, len(to_encode))
split_doc = Document(page_content=tokenizer.decode(current_encoded)[period_index_b+1:period_index_e].replace('<s> ', ''), metadata=doc.metadata.copy()) # Split at the begining and the end
else:#first chunk
# print("else")
split_doc = Document(page_content=tokenizer.decode(current_encoded)[:period_index_e].replace('<s> ', ''), metadata=doc.metadata.copy()) # split only at the end if its first chunk
if 'titles' in split_doc.metadata:
# print("title in metadata")
chunk_counter += 1
split_doc.metadata['chunk_id'] = chunk_counter
#A1 We could round chunk length in token if we ignore the '.' position in the overlap and save time of computation
split_doc.metadata['token_length'] = len(tokenizer.encode(split_doc.page_content))
resized.append(split_doc)
print(f"Added a document of {split_doc.metadata['token_length']} tokens 3")
remaining_encoded = remaining_encoded[max(10, max_length - overlap):]
is_first_chunk = False
# # print(len(tokenizer.encode(split_doc.page_content)), split_doc.page_content[:50], "\n-----------------")
# print("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~")
# print(split_doc.page_content[:100])
# # print("😂😂😂😂")
# print(split_doc.page_content[-100:])
# print("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~")
else:# len(encoded)>min_chunk_size:#ignore the chunks that are too small
print(f"found a chunk with the perfect size:{len(encoded)}")
#print(f"◀Document:{{ {doc.page_content} }} was not added because to short▶")
if 'titles' in doc.metadata:#check if it was splitted by or split_docx
chunk_counter += 1
doc.metadata['chunk_id'] = chunk_counter
doc.metadata['token_length'] = len(encoded)
doc.page_content = tokenizer.decode(encoded).replace('<s> ', '')
resized.append(doc)
print(f"Added a document of {doc.metadata['token_length']} tokens 4")
print(f"Number of chunks before resplitting: {len(documents)} \nAfter splitting: {len(resized)}")
return resized
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE
def split_doc_in_chunks(input_folder, base_folders, nb_pages):
docs = []
for i, filename in enumerate(input_folder):
path = filename#os.path.join(input_folder, filename)
print(f"Treating file {i+1}/{len(input_folder)}")
# Select the appropriate document loader
chunks=[]
if path.endswith(".pdf"):
# try:
print("Treatment of pdf file", path)
raw_chunks = split_pdf(path)
for raw_chunk in raw_chunks:
print(f"BASE zzzzz LIST : {base_folders} = i = {i}")
raw_chunk.metadata["Base Folder"] = base_folders[i]
sb_chunks = group_chunks_by_section(raw_chunks)
if nb_pages > 0:
for sb_chunk in sb_chunks:
print(f"CHUNK PAGENUM = {sb_chunk.metadata['page_number']}")
if int(sb_chunk.metadata["page_number"])<=nb_pages:
chunks.append(sb_chunk)
else:
break
else:
chunks = sb_chunks
print(f"Document splitted in {len(chunks)} chunks")
# for chunk in chunks:
# print(f"\n\n____\n\n\nPDF CONTENT: \n{chunk.page_content}\ntitle: {chunk.metadata['title']}\nFile Name: {chunk.metadata['filename']}\n\n")
# except Exception as e:
# print("Error while splitting the pdf file: ", e)
elif path.endswith(".docx"):
try:
print ("Treatment of docx file", path)
raw_chunks = split_docx(path)
for raw_chunk in raw_chunks:
raw_chunk.metadata["Base Folder"] = base_folders[i]
#print(f"RAW :\n***\n{raw_chunks}")
chunks = group_chunks_by_section(raw_chunks)
print(f"Document splitted in {len(chunks)} chunks")
#if "cards-Jan 2022-SP.docx" in path:
#for chunk in chunks:
#print(f"\n\n____\n\n\nDOCX CONTENT: \n{chunk.page_content}\ntitle: {chunk.metadata['title']}\nFile Name: {chunk.metadata['filename']}\n\n")
except Exception as e:
print("Error while splitting the docx file: ", e)
elif path.endswith(".doc"):
try:
loader = UnstructuredFileLoader(path)
# Load the documents and split them in chunks
chunks = loader.load_and_split(text_splitter=text_splitter)
counter, counter2 = collections.Counter(), collections.Counter()
filename = os.path.basename(path)
# Define a unique id for each chunk
for chunk in chunks:
chunk.metadata["filename"] = filename.split("/")[-1]
chunk.metadata["file_directory"] = filename.split("/")[:-1]
chunk.metadata["filetype"] = filename.split(".")[-1]
chunk.metadata["Base Folder"] = base_folders[i]
if "page" in chunk.metadata:
counter[chunk.metadata['page']] += 1
for i in range(len(chunks)):
counter2[chunks[i].metadata['page']] += 1
chunks[i].metadata['source'] = filename
else:
if len(chunks) == 1:
chunks[0].metadata['source'] = filename
#The file type is not supported (e.g. .xlsx)
except Exception as e:
print(f"An error occurred: {e}")
elif path.endswith(".txt"):
try:
print ("Treatment of txt file", path)
chunks = split_txt(path)
for chunk in chunks:
chunk.metadata["Base Folder"] = base_folders[i]
print(f"Document splitted in {len(chunks)} chunks")
except Exception as e:
print("Error while splitting the docx file: ", e)
try:
if len(chunks)>0:
docs += chunks
except NameError as e:
print(f"An error has occured: {e}")
return docs
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE
def resplit_by_end_of_sentence(docs, max_len, overlap, min_len):
print("❌❌\nResplitting docs by end of sentence\n❌❌")
resized_docs = split_chunks_by_tokens_period(docs, max_len, overlap, min_len)
try:
# add chunk title to all resplitted chunks #todo move this to split_chunks_by_tokens_period(inject_title = True) with a boolean parameter
cur_source = ""
cpt_chunk = 1
for resized_doc in resized_docs:
try:
title = resized_doc.metadata['titles'].split(' ~~ ')[-2] #Getting the last title of the chunk and adding it to the content if it is not the case
if title not in resized_doc.page_content:
resized_doc.page_content = title + "\n" + resized_doc.page_content
if cur_source == resized_doc.metadata["source"]:
resized_doc.metadata['chunk_number'] = cpt_chunk
else:
cpt_chunk = 1
cur_source = resized_doc.metadata["source"]
resized_doc.metadata['chunk_number'] = cpt_chunk
except Exception as e:#either the title was notfound or title absent in metadata
print("An error occured: ", e)
#print(f"METADATA:\n{resized_doc.metadata}")
cpt_chunk += 1
except Exception as e:
print('AN ERROR OCCURRED: ', e)
return resized_docs
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE
def build_index(docs, index, output_folder):
if len(docs) > 0:
if index is not None:
# Compute the embedding of each chunk and index these chunks
new_index = FAISS.from_documents(docs, embeddings)
index.merge_from(new_index)
else:
index = FAISS.from_documents(docs, embeddings)
with tempfile.TemporaryDirectory() as temp_dir:
index.save_local(temp_dir)
for f in os.listdir(temp_dir):
output_folder.upload_file(f, os.path.join(temp_dir, f))
def extract_zip(zip_path):
extracted_files = []
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
for file_info in zip_ref.infolist():
extracted_files.append(file_info.filename)
zip_ref.extract(file_info.filename)
return extracted_files
def split_in_df(files, nb_pages):
processed_files = []
base_folders = []
print("Processing zip files...")
for file_path in files:
if file_path.endswith('.zip'):
extracted_files = extract_zip(file_path)
processed_files.extend(extracted_files)
base_folders.extend([os.path.splitext(os.path.basename(file_path))[0]] * len(extracted_files))
else:
processed_files.append(file_path)
base_folders.append("")
print(f"BASE FOLDERS LIST : {base_folders}, FILES LIST : {processed_files}")
print("Finished processing zip files\nSplitting files into chunks...")
documents = split_doc_in_chunks(processed_files, base_folders, nb_pages)
re_docs = resplit_by_end_of_sentence(documents, 700, 100, 1000)
print("Finished splitting")
df = pd.DataFrame()
for re_doc in re_docs:
filename = re_doc.metadata['filename']
content = re_doc.page_content
# metadata = document.metadata
# metadata_keys = list(metadata.keys())
# metadata_values = list(metadata.values())
doc_data = {'Filename': filename, 'Content': content}
doc_data["Token_Length"] = re_doc.metadata['token_length']
doc_data["Titles"] = re_doc.metadata['titles'] if 'titles' in re_doc.metadata else ""
doc_data["Base Folder"] = re_doc.metadata["Base Folder"]
# for key, value in zip(metadata_keys, metadata_values):
# doc_data[key] = value
df = pd.concat([df, pd.DataFrame([doc_data])], ignore_index=True)
df.to_excel("dataframe.xlsx", index=False)
return "dataframe.xlsx"
# -------------------------------------------------------------------------------- SPLIT FILES BY KEYWORDS
def split_by_keywords(files, key_words, words_limit=1000):
processed_files = []
extracted_content = []
tabLine = []
# For each files : stock the PDF, extract the Zips and convert the Doc & Docx to PDF
try:
not_duplicate = True
for f in files:
for p in processed_files:
if (f[:f.rfind('.')] == p[:p.rfind('.')]):
not_duplicate = False
if not_duplicate:
if f.endswith('.zip'):
extracted_files = extract_zip(f)
print(f"Those are my extracted files{extracted_files}")
for doc in extracted_files:
if doc.endswith('.doc') or doc.endswith('.docx'):
processed_files.append(transform_to_pdf(doc))
if doc.endswith('.pdf'):
processed_files.append(doc)
if f.endswith('.pdf'):
processed_files.append(f)
if f.endswith('.doc') or f.endswith('.docx'):
processed_files.append(transform_to_pdf(f))
except Exception as ex:
print(f"Error occured while processing files : {ex}")
# For each processed files extract content
for file in processed_files:
try:
file_name = file
file = PdfReader(file)
pdfNumberPages = len(file.pages)
for pdfPage in range(0, pdfNumberPages):
load_page = file.get_page(pdfPage)
text = load_page.extract_text()
lines = text.split("\n")
sizeOfLines = len(lines) - 1
for index, line in enumerate(lines):
print(line)
for key in key_words:
if key in line:
print("Found keyword")
lineBool = True
lineIndex = index
previousSelectedLines = []
stringLength = 0
linesForSelection = lines
loadOnce = True
selectedPdfPage = pdfPage
while lineBool:
print(lineIndex)
if stringLength > words_limit or lineIndex < 0:
lineBool = False
else:
if lineIndex == 0:
print(f"Line index == 0")
if pdfPage == 0:
lineBool = False
else:
try:
selectedPdfPage -= 1
newLoad_page = file.get_page(selectedPdfPage)
newText = newLoad_page.extract_text()
newLines = newText.split("\n")
linesForSelection = newLines
print(f"len newLines{len(newLines)}")
lineIndex = len(newLines) - 1
except Exception as e:
print(f"Loading previous PDF page failed")
lineBool = False
previousSelectedLines.append(linesForSelection[lineIndex])
stringLength += len(linesForSelection[lineIndex])
lineIndex -= 1
previousSelectedLines = ' '.join(previousSelectedLines[::-1])
lineBool = True
lineIndex = index + 1
nextSelectedLines = ""
linesForSelection = lines
loadOnce = True
selectedPdfPage = pdfPage
while lineBool:
if len(nextSelectedLines.split()) > words_limit:
lineBool = False
else:
if lineIndex > sizeOfLines:
lineBool = False
if pdfPage == pdfNumberPages - 1:
lineBool = False
else:
try:
selectedPdfPage += 1
newLoad_page = file.get_page(selectedPdfPage)
newText = newLoad_page.extract_text()
newLines = newText.split("\n")
linesForSelection = newLines
lineIndex = 0
except Exception as e:
print(f"Loading next PDF page failed")
lineBool = False
else:
nextSelectedLines += " " + linesForSelection[lineIndex]
lineIndex += 1
print(f"Previous Lines : {previousSelectedLines}")
print(f"Next Lines : {nextSelectedLines}")
selectedText = previousSelectedLines + ' ' + nextSelectedLines
print(selectedText)
tabLine.append([file_name, selectedText, key])
print(f"Selected line in keywords is: {line}")
except Exception as ex:
print(f"Error occured while extracting content : {ex}")
for r in tabLine:
text_joined = ''.join(r[1])
text_joined = r[2] + " : \n " + text_joined
extracted_content.append([r[0], text_joined])
df = pd.DataFrame()
for content in extracted_content:
filename = content[0]
text = content[1]
# metadata = document.metadata
# metadata_keys = list(metadata.keys())
# metadata_values = list(metadata.values())
doc_data = {'Filename': filename[filename.rfind("/")+1:], 'Content': text}
# for key, value in zip(metadata_keys, metadata_values):
# doc_data[key] = value
df = pd.concat([df, pd.DataFrame([doc_data])], ignore_index=True)
df.to_excel("dataframe_keywords.xlsx", index=False)
return "dataframe_keywords.xlsx"
# -------------------------------------------------------------------------------- NON INTELLIGENT SPLIT
def transform_to_pdf(doc):
instructions = {'parts': [{'file': 'document'}]}
response = requests.request(
'POST',
'https://api.pspdfkit.com/build',
headers = { 'Authorization': 'Bearer pdf_live_nS6tyylSW57PNw9TIEKKL3Tt16NmLCazlQWQ9D33t0Q'},
files = {'document': open(doc, 'rb')},
data = {'instructions': json.dumps(instructions)},
stream = True
)
pdf_name = doc[:doc.find(".doc")] + ".pdf"
if response.ok:
with open(pdf_name, 'wb') as fd:
for chunk in response.iter_content(chunk_size=8096):
fd.write(chunk)
return pdf_name
else:
print(response.text)
exit()
return none
def non_intelligent_split(files, chunk_size = 1000):
extracted_content = []
processed_files = []
# For each files : stock the PDF, extract the Zips and convert the Doc & Docx to PDF
try:
not_duplicate = True
for f in files:
for p in processed_files:
if (f[:f.rfind('.')] == p[:p.rfind('.')]):
not_duplicate = False
if not_duplicate:
if f.endswith('.zip'):
extracted_files = extract_zip(f)
print(f"Those are my extracted files{extracted_files}")
for doc in extracted_files:
if doc.endswith('.doc') or doc.endswith('.docx'):
processed_files.append(transform_to_pdf(doc))
if doc.endswith('.pdf'):
processed_files.append(doc)
if f.endswith('.pdf'):
processed_files.append(f)
if f.endswith('.doc') or f.endswith('.docx'):
processed_files.append(transform_to_pdf(f))
except Exception as ex:
print(f"Error occured while processing files : {ex}")
# Extract content from each processed files
try:
for f in processed_files:
print(f"my filename is : {f}")
file = PdfReader(f)
pdfNumberPages = len(file.pages)
selectedText = ""
for pdfPage in range(0, pdfNumberPages):
load_page = file.get_page(pdfPage)
text = load_page.extract_text()
lines = text.split("\n")
sizeOfLines = 0
for index, line in enumerate(lines):
sizeOfLines += len(line)
selectedText += " " + line
if sizeOfLines >= chunk_size:
textContent = (f"Page {str(pdfPage)} : {selectedText}")
extracted_content.append([f, textContent])
sizeOfLines = 0
selectedText = ""
textContent = (f"Page {str(pdfNumberPages)} : {selectedText}")
extracted_content.append([f, textContent])
except Exception as ex:
print(f"Error occured while extracting content from processed files : {ex}")
df = pd.DataFrame()
for content in extracted_content:
filename = content[0]
text = content[1]
doc_data = {'Filename': filename[filename.rfind("/")+1:], 'Content': text}
df = pd.concat([df, pd.DataFrame([doc_data])], ignore_index=True)
df.to_excel("dataframe_keywords.xlsx", index=False)
return "dataframe_keywords.xlsx" |