Spaces:
Sleeping
Sleeping
File size: 15,313 Bytes
bc31df8 a64fd96 efa9b10 e798441 68bf5c0 56f5312 d7d88a6 738c47d ef2a31f efa9b10 def0304 b5ddf28 def0304 f02448c e6b2ec2 465d3ac e6b2ec2 a0f7ce7 e48099b e6b2ec2 f02448c f350911 5df3669 cee1edf f350911 cee1edf 2696a61 e0f7a1f 2696a61 799f319 3252717 2696a61 cee1edf 2696a61 efa9b10 783a6b1 d7d88a6 5438143 d7d88a6 1188f75 d7d88a6 01936b7 d7d88a6 783a6b1 efa9b10 d9f31af efa9b10 3b26dac 8af7a53 3b26dac 7cb2e91 7fa6d71 7cb2e91 efa9b10 ef2a31f 64c4a07 e6b2ec2 ef2a31f 7cb2e91 cc4d71b b901c76 6fdd23e efa9b10 0ec483d 16f3b53 def0304 7ca5761 def0304 efa9b10 b901c76 7d614a6 3b26dac cee1edf 2b6d359 019928f f0ce94d f02448c 11711e5 435b599 2b6d359 56f5312 019928f f0ce94d 56f5312 3b26dac 56f5312 da4b039 56f5312 3b26dac 56f5312 738c47d b901c76 738c47d 5438143 738c47d ef82d84 4c4cf13 738c47d efa9b10 3b26dac efa9b10 2696a61 cee1edf 2696a61 783a6b1 d7d88a6 783a6b1 738c47d 7cb2e91 7854dd4 1b0a7da 738c47d 56f5312 019928f ef2a31f e6b2ec2 cee1edf 07195ae cee1edf 0ce495e f350911 cee1edf 83736e3 738c47d cee1edf 2696a61 418d1f5 9007f52 4c4cf13 738c47d 56f5312 da4b039 56f5312 f02448c efa9b10 724556d efa9b10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
import subprocess
subprocess.run(["pip", "uninstall", "pdfminer"])
subprocess.run(["pip", "install", "pdfminer.six==20231228"])
import gradio as gr
from scrape_3gpp import *
from excel_chat import *
from classification import *
from chart_generation import *
from charts_advanced import *
from users_management import *
from code_df_custom import *
from split_files_to_excel import *
# Categories
categories = [
{
"topic": "Confidentiality and Privacy Protection",
"description": "This topic covers the protection of confidentiality, privacy, and integrity in security systems. It also includes authentication and authorization processes.",
"experts": ["Mireille"]
},
{
"topic": "Distributed Trust and End-User Trust Models",
"description": "This topic focuses on distributed trust models and how end-users establish trust in secure systems.",
"experts": ["Mireille", "Khawla"]
},
{
"topic": "Secure Element and Key Provisioning",
"description": "This topic involves the secure element in systems and the process of key provisioning.",
"experts": ["Mireille"]
},
{
"topic": "Residential Gateway Security",
"description": "This topic covers the security aspects of Residential Gateways.",
"experts": ["Mireille"]
},
{
"topic": "Standalone Non-Public Network (SNPN) Inter-Connection and Cybersecurity",
"description": "This topic focuses on the inter-connection of Standalone Non-Public Networks and related cyber-security topics.",
"experts": ["Khawla"]
},
{
"topic": "Distributed Ledger and Blockchain in SNPN",
"description": "This topic covers the use of distributed ledger technology and blockchain in securing Standalone Non-Public Networks.",
"experts": ["Khawla"]
},
{
"topic": "Distributed Networks and Communication",
"description": "This topic involves distributed networks such as mesh networks, ad-hoc networks, and multi-hop networks, and their cyber-security aspects.",
"experts": ["Guillaume"]
},
{
"topic": "Swarm of Drones and Unmanned Aerial Vehicles Network Infrastructure",
"description": "This topic covers the network infrastructure deployed by Swarm of Drones and Unmanned Aerial Vehicles.",
"experts": ["Guillaume"]
},
{
"topic": "USIM and Over-the-Air Services",
"description": "This topic involves USIM and related over-the-air services such as Steering of Roaming, roaming services, network selection, and UE configuration.",
"experts": ["Vincent"]
},
{
"topic": "Eco-Design and Societal Impact of Technology",
"description": "This topic covers eco-design concepts, including energy saving, energy efficiency, carbon emissions, and the societal impact of technology.",
"experts": ["Pierre"]
},
{
"topic": "Service Requirements of New Services",
"description": "This topic involves defining service requirements for new services, detecting low signals of new trends and technologies, and assessing their impact on USIM services or over-the-air services.",
"experts": ["Ly-Thanh"]
},
{
"topic": "Satellite and Non Terrestrial Networks",
"description": "This topic covers satellite networks, Non Terrestrial Networks, Private Networks, IoT, Inter Satellite communication, and Radio Access Network.",
"experts": ["Nicolas"]
},
{
"topic": "Public Safety and Emergency Communication",
"description": "This topic involves Public Safety Communication, Military Communication, Emergency Calls, Emergency Services, Disaster Communication Access, and other related areas.",
"experts": ["Dorin"]
},
{
"topic": "Identifying the Human User of a Subscription",
"description": "This topic involves methods and processes for identifying the human user associated with a subscription.",
"experts": ["Kumar"] # Les experts pour cette catégorie ne sont pas spécifiés
},
{
"topic": "Authentication and Authorization of Users and Restrictions on Users",
"description": "This topic covers authentication and authorization processes, as well as restrictions imposed on users.",
"experts": ["Kumar"] # Les experts pour cette catégorie ne sont pas spécifiés
},
{
"topic": "Exposure of User Identity Profile Information",
"description": "This topic involves the exposure of user identity profile information and its security implications.",
"experts": ["Kumar"] # Les experts pour cette catégorie ne sont pas spécifiés
},
{
"topic": "Identifying non-3GPP Devices Connecting behind a UE or 5G-RG",
"description": "This topic involves identifying non-3GPP devices connecting behind a UE (User Equipment) or 5G-RG (5G Residential Gateway).",
"experts": ["Kumar"] # Les experts pour cette catégorie ne sont pas spécifiés
}
]
df_cate = pd.DataFrame(categories)
# def update_label(label1):
# return gr.update(choices=list(df.columns))
# Functions needed for Split Files
def functionCall(fi_input, dropdown, choice):
if choice == "Intelligent split":
return split_in_df(fi_input)
else:
return split_by_keywords(fi_input,dropdown)
def change_textbox(dropdown,radio):
if len(dropdown) == 0 :
dropdown = ["introduction", "objective", "summary", "conclusion"]
if radio == "Intelligent split by keywords":
return gr.Dropdown(dropdown, multiselect=True, visible=True, allow_custom_value=True)
else:
return gr.Dropdown(dropdown, multiselect=True, visible=False, allow_custom_value=True)
### Split files end
def reset_cate(df_categories):
if df_categories.equals(df_cate):
df_categories = pd.DataFrame([['', '', '']], columns=['topic', 'description', 'expert'])
else:
df_categories = df_cate.copy()
return df_categories
global value
value = set()
def list_attributes_and_values():
global value
attr = 'temp_files'
new_value = getattr(fi_config, attr)
print(f"value: {value}\nnew value: {new_value}")
tmp = list(new_value - value)[0]
value = set(new_value)
html_script = f"""
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta http-equiv="refresh" content="0; url=https://organizedprogrammers-standard-intelligence-dev.hf.space/file={tmp}">
<title>Redirecting to Google</title>
</head>
<body>
<p>If you are not redirected automatically, please <a href="https://organizedprogrammers-standard-intelligence-dev.hf.space/file={tmp}">click here</a>.</p>
</body>
</html>
"""
return html_script
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
gr.Markdown("## Extraction, Classification and AI tool")
with gr.Column():
md_username = gr.Markdown(value='## Hi Guest!')
btn_logout = gr.Button("Logout")
with gr.Accordion(label="**Login** to keep user preferences", open=False):
st_user = gr.State(value={"name":"Guest", "hashed_password":"e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855", "history": { "keywords": [ "value1", "value3", "value4"], "prompts": [] }})
with gr.Column():
tb_user = gr.Textbox(label='Username')
tb_pwd = gr.Textbox(label='Password', type='password')
with gr.Row():
btn_login = gr.Button('Login')
with gr.Tab("File extraction"):
gr.Markdown("### This part aims to extract the most relevant content and information about every contribution from a 3gpp meeting")
gr.Markdown(" Put either just a link, or a link and an excel file with an 'Actions' column")
with gr.Row():
dd_url = gr.Dropdown(label="(e.g. https://www.3gpp.org/ftp/TSG_SA/WG1_Serv/TSGS1_105_Athens/Docs)", multiselect=False, value="https://www.3gpp.org/ftp/", allow_custom_value=True, scale=9)
btn_search = gr.Button("Search")
with gr.Accordion("Filter by file status", open=False):
with gr.Row():
dd_status = gr.Dropdown(label="Status to look for (Optional)", allow_custom_value=False, multiselect=True, scale=7)
btn_search_status = gr.Button("Search for status", scale=2)
btn_extract = gr.Button("Extract excel from URL")
with gr.Tab("Split Files"):
gr.Markdown("### Upload your standard documentation (pdf, doc, docx) to split it into paragraphs in an Excel file")
radio = gr.Radio(
["Intelligent split", "Intelligent split by keywords"], label="Choose your selection", value = "Intelligent split"
)
dropdown_split = gr.Dropdown(["introduction", "objective", "conclusion", "summary"], multiselect=True, visible=False, allow_custom_value=True)
fi_input = gr.File(file_count='multiple')
with gr.Tab("Ask LLM"):
gr.Markdown("### This section utilizes Large Language Models (LLMs) to query rows in an Excel file")
dd_source_ask = gr.Dropdown(label="Source Column(s)", multiselect=True)
tb_destcol = gr.Textbox(label="Destination column label (e.g. Summary, ELI5, PAB)")
dd_prompt = gr.Dropdown(label="Prompt", allow_custom_value=True, multiselect=True, max_choices=1)
dd_llm = gr.Dropdown(["Mistral Tiny","Mistral Small","Mistral Medium", "Claude Sonnet", "Claude Opus", "Groq (mixtral)"],value="Groq (mixtral)", label="Choose your LLM")
with gr.Accordion("Filters", open=False):
with gr.Row():
dd_searchcol = gr.Dropdown(label="Column to look into (Optional)", value='[ALL]', multiselect=False, scale=4)
dd_keywords = gr.Dropdown(label="Words to look for (Optional)", multiselect=True, allow_custom_value=True, scale=5)
mist_button = gr.Button("Ask AI")
with gr.Tab("Classification by topic"):
gr.Markdown("### This section will categories each contribution in your own personalized categories")
with gr.Row():
dd_source_class = gr.Dropdown(label="Source Column", multiselect=False, scale=7)
sl_treshold = gr.Slider(minimum=0, maximum=1, value=0.45, step=0.05, label='Similarity Treshold')
gr.Markdown("### The predefined categories can be modified at any time")
df_category = gr.DataFrame(label='categories', value=df_cate, interactive=True)
with gr.Row():
btn_reset_df = gr.Button("Reset Categories")
btn_classif = gr.Button("Categorize")
with gr.Tab(" Personalised Charts Generation"):
gr.Markdown("### This section will create a chart using two columns of your choice")
with gr.Row():
dd_label1 = gr.Dropdown(label="Label 1", multiselect=False)
dd_label2 = gr.Dropdown(label="Label 2", value="", multiselect=False)
btn_chart = gr.Button("Generate Bar Plot")
plt_figure = gr.Plot()
with gr.Tab("Meeting Report (charts)"):
gr.Markdown("### This section will create a report using multiple charts with your columns")
gr.Markdown("Make sure you have an 'Expert', 'Source' and 'Status' column")
with gr.Tab("Overall"):
btn_overall = gr.Button("Overall Review")
with gr.Tab("By Expert"):
dd_exp=gr.Dropdown(label="Experts", multiselect=False, allow_custom_value=True,)
btn_expert = gr.Button("Top 10 by expert")
with gr.Tab("By Company"):
tb_com=gr.Textbox(label="Company Name",info="You can write 1, 2 or 3 company names at the same time")
btn_type = gr.Button("Company info")
with gr.Row():
plt_chart = gr.Plot(label="Graphique")
plt_chart2 = gr.Plot(label="Graphique")
plt_chart3 = gr.Plot(label="Graphique")
with gr.Tab("Code on your file"):
gr.Markdown("### This section lets you add your own code to add functions and filters to edit the files")
with gr.Accordion("Input DataFrame Preview", open=False):
df_input = gr.DataFrame(interactive=False)
gr.Markdown("```python\ndf = pd.read_excel(YOUR_FILE)\n```")
cd_code = gr.Code(value="# Create a copy of the original DataFrame\nnew_df = df.copy()\n\n# Add a new column to the copy\nnew_df['NewColumn'] = 'New Value'", language='python')
gr.Markdown("```python\nnew_df.to_excel(YOUR_NEW_FILE)\nreturn YOUR_NEW_FILE\n```")
btn_run_code = gr.Button()
error_display = gr.Markdown()
df_output_code = gr.DataFrame(interactive=False)
btn_export_df = gr.Button('Export df as excel')
st_filename = gr.State()
with gr.Accordion("Excel Preview", open=False):
df_output = gr.DataFrame()
fi_excel = gr.File(label="Excel File")
ht_dl = gr.HTML()
global fi_config
fi_config = gr.File(type='binary', visible=False)
# authentication
btn_login.click(auth_user, inputs=[tb_user, tb_pwd], outputs=[st_user, md_username, dd_prompt, dd_keywords])
tb_pwd.submit(auth_user, inputs=[tb_user, tb_pwd], outputs=[st_user, md_username, dd_prompt, dd_keywords])
btn_logout.click(logout, inputs=None, outputs=[st_user, md_username, dd_prompt, dd_keywords])
# 3GPP scraping
btn_search_status.click(extract_statuses, inputs=dd_url, outputs=dd_status)
btn_search.click(browse_folder, inputs=dd_url, outputs=dd_url)
dd_url.change(browse_folder, inputs=dd_url, outputs=dd_url)
#fi_excel.change(get_expert,inputs=fi_excel, outputs=dd_exp)
fi_excel.change(get_columns, inputs=[fi_excel], outputs=[dd_source_ask, dd_source_class, dd_label1, dd_label2, dd_searchcol, df_output,st_filename, df_input])
btn_extract.click(extractionPrincipale, inputs=[dd_url, fi_excel, dd_status], outputs=[fi_excel])
# Split files
#fi_input.upload(split_in_df, inputs=fi_input, outputs=fi_excel)
fi_input.upload(functionCall, inputs=[fi_input, dropdown_split, radio], outputs=fi_excel)
radio.change(fn=change_textbox, inputs=[dropdown_split,radio], outputs=dropdown_split)
#llm
mist_button.click(chat_with_mistral, inputs=[dd_source_ask, tb_destcol, dd_prompt, fi_excel, dd_url, dd_searchcol, dd_keywords, dd_llm, st_user], outputs=[fi_excel, df_output, dd_prompt, dd_keywords, st_user, fi_config])
#classification
btn_classif.click(classification, inputs=[dd_source_class, fi_excel, df_category, sl_treshold], outputs=[fi_excel, df_output])
btn_reset_df.click(reset_cate, inputs=df_category, outputs=df_category)
#charts
btn_chart.click(create_bar_plot, inputs=[fi_excel, dd_label1, dd_label2], outputs=[plt_figure])
#json download
fi_config.change(list_attributes_and_values, inputs=None, outputs=ht_dl)
btn_run_code.click(run_code, inputs=[fi_excel, cd_code], outputs=[df_output_code, error_display])
btn_export_df.click(export_df, inputs=[df_output_code, st_filename], outputs=fi_excel)
btn_overall.click(generate_company_chart,inputs=[fi_excel], outputs=[plt_chart])
btn_overall.click(status_chart,inputs=[fi_excel], outputs=[plt_chart2])
btn_overall.click(category_chart,inputs=[fi_excel], outputs=[plt_chart3])
btn_expert.click(chart_by_expert,inputs=[fi_excel,dd_exp], outputs=[plt_chart])
btn_type.click(company_document_type,inputs=[fi_excel,tb_com], outputs=[plt_chart])
# dd_label1.change(update_label, inputs=[dd_label1], outputs=[dd_label2])
demo.launch(debug=True) |