File size: 5,027 Bytes
f8182db
99e245d
d74ebd5
a51300a
d328d4c
60b5a4c
d7454ed
 
55d1370
c4fa864
56666a2
949b93c
f8182db
d24bd0f
 
d7454ed
9f2a1cd
d7454ed
 
 
9f2a1cd
d7454ed
 
 
 
 
0f0d8fb
d7454ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e28fcd2
d7454ed
 
d24bd0f
 
 
d7454ed
 
d24bd0f
 
 
 
 
 
09213d6
d24bd0f
d74ebd5
d24bd0f
 
ce6d9ab
d24bd0f
 
ce6d9ab
d24bd0f
 
 
 
d7454ed
f8182db
ed609ce
d24bd0f
 
e28fcd2
 
2491068
d7454ed
2491068
f8182db
068c371
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import gradio as gr
import os
import cv2
from encoded_video import EncodedVideo, write_video
import torch
import numpy as np
from torchvision.datasets import ImageFolder
from transformers import ViTFeatureExtractor, ViTForImageClassification,  AutoFeatureExtractor, ViTMSNForImageClassification
from pathlib import Path
import pytorch_lightning as pl
from torch.utils.data import DataLoader
from torchmetrics import Accuracy

def video_identity(video,user_name,class_name,trainortest,ready):
    if ready=='yes':

        data_dir = Path(str(user_name)+'/train')
        train_ds = ImageFolder(data_dir)

        
        test_dir = Path(str(user_name)+'/test')
        test_ds = ImageFolder(test_dir)        
        
        label2id = {}
        id2label = {}

        for i, class_name in enumerate(train_ds.classes):
            label2id[class_name] = str(i)
            id2label[str(i)] = class_name      
            
        class ImageClassificationCollator:
            def __init__(self, feature_extractor):
                self.feature_extractor = feature_extractor

            def __call__(self, batch):
                encodings = self.feature_extractor([x[0] for x in batch], return_tensors='pt')
                encodings['labels'] = torch.tensor([x[1] for x in batch], dtype=torch.long)
                return encodings 
        feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k')
        model = ViTForImageClassification.from_pretrained(
            'google/vit-base-patch16-224-in21k',
            num_labels=len(label2id),
            label2id=label2id,
            id2label=id2label
        )
        collator = ImageClassificationCollator(feature_extractor)
        class Classifier(pl.LightningModule):

            def __init__(self, model, lr: float = 2e-5, **kwargs):
                super().__init__()
                self.save_hyperparameters('lr', *list(kwargs))
                self.model = model
                self.forward = self.model.forward
                self.val_acc = Accuracy(
                    task='multiclass' if model.config.num_labels > 2 else 'binary',
                    num_classes=model.config.num_labels
                )

            def training_step(self, batch, batch_idx):
                outputs = self(**batch)
                self.log(f"train_loss", outputs.loss)
                return outputs.loss

            def validation_step(self, batch, batch_idx):
                outputs = self(**batch)
                self.log(f"val_loss", outputs.loss)
                acc = self.val_acc(outputs.logits.argmax(1), batch['labels'])
                self.log(f"val_acc", acc, prog_bar=True)
                return outputs.loss

            def configure_optimizers(self):
                return torch.optim.Adam(self.parameters(), lr=self.hparams.lr)

            
           
        train_loader = DataLoader(train_ds, batch_size=8, collate_fn=collator, num_workers=8, shuffle=True)
        test_loader = DataLoader(test_ds, batch_size=8, collate_fn=collator, num_workers=2)
        
        
        for name, param in model.named_parameters():
            param.requires_grad = False
            if name.startswith("classifier"): # choose whatever you like here
                param.requires_grad = True
                
        pl.seed_everything(42)
        classifier = Classifier(model, lr=2e-5)
        trainer = pl.Trainer(accelerator='cpu', devices=1, precision=16, max_epochs=3)
        
        trainer.fit(classifier, train_loader, test_loader)
        
        for batch_idx, data in enumerate(test_loader):
            outputs = model(**data)
        img=data['pixel_values'][0][0]
        preds=str(outputs.logits.softmax(1).argmax(1))
        labels=str(data['labels'])
        
        return img, preds, labels
    
    else:
        capture = cv2.VideoCapture(video)
   
        user_d=str(user_name)+'/'+str(trainortest)
        class_d=str(user_name)+'/'+str(trainortest)+'/'+str(class_name)
        if not os.path.exists(user_d):
            os.makedirs(user_d) 
        if not os.path.exists(class_d):
            os.makedirs(class_d)
        frameNr = 0
        while (True):

            success, frame = capture.read()

            if success:
                cv2.imwrite(f'{class_d}/frame_{frameNr}.jpg', frame)

            else:
                break

            frameNr = frameNr+10

        img=cv2.imread(class_d+'/frame_0.jpg')

        return img, trainortest, class_d
demo = gr.Interface(video_identity, 
                    inputs=[gr.Video(source='upload'),
                            gr.Text(),
                            gr.Text(),
                            gr.Text(label='Which set is this? (type train or test)'),
                            gr.Text(label='Are you ready? (type yes or no)')],
                    outputs=[gr.Image(),
                             gr.Text(),
                             gr.Text()],
                    cache_examples=True)
demo.launch(debug=True)