File size: 2,749 Bytes
7eb6194
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import math
import torch
import torch.nn as nn
import numpy as np
from skimage.measure.simple_metrics import compare_psnr
from torchvision import models


def weights_init_kaiming(m):
    classname = m.__class__.__name__
    if classname.find('Conv') != -1:
        nn.init.kaiming_normal(m.weight.data, a=0, mode='fan_in')
    elif classname.find('Linear') != -1:
        nn.init.kaiming_normal(m.weight.data, a=0, mode='fan_in')
    elif classname.find('BatchNorm') != -1:
        # nn.init.uniform(m.weight.data, 1.0, 0.02)
        m.weight.data.normal_(mean=0, std=math.sqrt(2./9./64.)).clamp_(-0.025,0.025)
        nn.init.constant(m.bias.data, 0.0)

class VGG19_PercepLoss(nn.Module):
    """ Calculates perceptual loss in vgg19 space
    """
    def __init__(self, _pretrained_=True):
        super(VGG19_PercepLoss, self).__init__()
        self.vgg = models.vgg19(pretrained=_pretrained_).features
        for param in self.vgg.parameters():
            param.requires_grad_(False)

    def get_features(self, image, layers=None):
        if layers is None: 
            layers = {'30': 'conv5_2'} # may add other layers
        features = {}
        x = image
        for name, layer in self.vgg._modules.items():
            x = layer(x)
            if name in layers:
                features[layers[name]] = x
        return features

    def forward(self, pred, true, layer='conv5_2'):
        true_f = self.get_features(true)
        pred_f = self.get_features(pred)
        return torch.mean((true_f[layer]-pred_f[layer])**2)


def batch_PSNR(img, imclean, data_range):
    Img = img.data.cpu().numpy().astype(np.float32)
    Iclean = imclean.data.cpu().numpy().astype(np.float32)
    PSNR = 0
    for i in range(Img.shape[0]):
        PSNR += compare_psnr(Iclean[i,:,:,:], Img[i,:,:,:], data_range=data_range)
    return (PSNR/Img.shape[0])

def data_augmentation(image, mode):
    out = np.transpose(image, (1,2,0))
    #out = image
    if mode == 0:
        # original
        out = out
    elif mode == 1:
        # flip up and down
        out = np.flipud(out)
    elif mode == 2:
        # rotate counterwise 90 degree
        out = np.rot90(out)
    elif mode == 3:
        # rotate 90 degree and flip up and down
        out = np.rot90(out)
        out = np.flipud(out)
    elif mode == 4:
        # rotate 180 degree
        out = np.rot90(out, k=2)
    elif mode == 5:
        # rotate 180 degree and flip
        out = np.rot90(out, k=2)
        out = np.flipud(out)
    elif mode == 6:
        # rotate 270 degree
        out = np.rot90(out, k=3)
    elif mode == 7:
        # rotate 270 degree and flip
        out = np.rot90(out, k=3)
        out = np.flipud(out)
    return np.transpose(out, (2,0,1))
    #return out